Изобретение относится к ароматическим полиэфирам, в частности, к ненасыщенным галогенсодержащим ароматическим полиэфирсульфонам, которые могут быть использованы в качестве конструкционных и пленочных материалов в электронике, электротехнике, авиационной, космической, автомобильной и других отраслях промышленности.
Известны ароматические полисульфоны, полиэфирсульфоны и сополимеры, блок-сополимеры на основе различных диоксисоединений и дигалогенароматических соединений. Для увеличения эксплуатационных характеристик полисульфонов используют сополимеризацию, где в качестве сомономеров используют как смеси различных бисфенолов, так и смеси различных дигалогенароматических соединений.
1. Болотина Л.М, Чеботарев В.П. Развитие исследований в области химии и технологии ароматических полисульфонов // Пласт. массы. - 2003, №11. - С. 3-7.
2. Михайлин Ю.А. Тепло-, термо- и огнестойкость полимерных материалов. М.: Научные основы и технологии. 2011. - 416 с.
3. Kharaev A.M., Shaov A.Kh., Bazheva R.Ch. The synthesis and stabilization of polymers. , 2013. - 300 p.
4. Патент РФ №2401826 «Мономер для поликонденсации». Авторы: Хараев A.M., Бажева Р.Ч., Ольховая Г.Г. и др. Опубл. 20.10. 2010. Бюл. №29.
По структуре и свойствам наиболее близкими к предлагаемым полиэфирам являются ароматические полиэфиры на основе смеси дифенилолпропана и фенолфталеина с 4,4'-дихлордифенилсульфоном по патенту РФ 2394848 МПК C08G 65/40, C08G 75/20 [Патент РФ №2394848 «Способ получения ароматических полиэфиров» Авторы: Ловков С.С., Чеботарев В.П. Опубл. 20.07.2010. Бюл. №20].
Однако, данные полиэфиры обладают невысокими показателями эксплуатационных характеристик.
Задачей изобретения является создание полиэфиров с повышенными термическими и механическими характеристиками, а также огнестойкостью, стойкого к воздействиям различных внешних условий.
Задача решается получением новых галогенсодержащих ненасыщенных ароматических полиэфиров формулы:
взаимодействием смеси 4,4'-дигидрокси-2,2-дифенилпропана и 1,1-дихлор-2,2-ди(4-оксифенил)этилена (при мольном соотношении бисфенолов от 99:1 до 1:99, где n=1-99, m=1-99, z=1-15) с 4,4'-дихлордифенилсульфоном в среде апротонного растворителя диметилсульфоксида или N,N-диметилацетамида, при температуре 160-180°С в присутствии щелочного агента.
Предлагаемые полиэфиры характеризуются повышенными показателями огне-, термо-, теплостойкости, а также механических характеристик.
Пример 1. Синтез полиэфиров в N,N-диметилацетамиде
В трехгорлую коническую колбу на 500 мл, снабженную механической мешалкой, ловушкой Дина-Старка, обратным холодильником, барботером для подачи газа и термометром, загружают 20,5461 г (0,09 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 2,8114 г (0,01 моль) 1,1-дихлор-2,2-ди(4-оксифенил)этилена, 250 мл N,N-диметилацетамида, 50 мл хлорбензола, 28,586 г (0,1 моль) 4,4'-дихлордифенилсульфона, 17,968 г К2СО3. При перемешивании и пропускании инертного газа поднимают температуру реакционной массы до 150-160°С и отгоняют азеотропную смесь хлорбензол: вода. Реакцию проводят при 170-180°С в кипящем N,N-диметилацетамиде в течение 6 часов. Раствор полимера высаждают в горячую дистиллированную воду, подкисленную щавелевой кислотой (на 100 мл воды 1 г щавелевой кислоты), полимер отфильтровывают, многократно промывают водой до отрицательной реакции на ионы хлора. Полимер сушат при 120°С под вакуумом в течение 24 часов.
Выход полиэфира составляет 96-98%. Приведенная вязкость 0,5%-ного раствора в 1,2-дихлорэтане равна 0,6 дл/г. Термоокислительная стойкость: 2% потери - 405-407°С. Прочность на разрыв - 76 МПа. Относительное удлинение - 55%. Огнестойкость: КИ = 28%. Температура стеклования - 192°С.
Пример 2. Синтез и выделение полимера ведут по примеру 1, только в качестве смеси бисфенолов берут 15,9803 г (0,07 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 8,4342 г (0,03 моль) 1,1-дихлор-2,2-ди(4-оксифенил)этилена. Продолжительность синтеза - 5 часов.
Выход полиэфира составляет 96-98%. Приведенная вязкость 0,5%-ного раствора в 1,2-дихлорэтане равна 0,65 дл/г. Термоокислительная стойкость: 2% потери - 425-427°С. Прочность на разрыв - 82 МПа. Относительное удлинение - 40%. Огнестойкость: КИ = 35%. Температура стеклования - 207°С.
Пример 3. Синтез и выделение полимера ведут по примеру 1, только в качестве смеси бисфенолов берут 11,4145 г (0,05 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 14,057 г (0,05 моль) 1,1-дихлор-2,2-ди(4-оксифенил)этилена. Продолжительность синтеза - 4 часа.
Выход полиэфира составляет 97-98%. Приведенная вязкость 0,5%-ного раствора в 1,2-дихлорэтане равна 0,69 дл/г. Термоокислительная стойкость: 2% потери - 435-437°С. Прочность на разрыв - 87 МПа. Относительное удлинение - 35%. Огнестойкость: КИ = 39%. Температура стеклования - 220°С.
Пример 4. Синтез и выделение полимера ведут по примеру 1, только в качестве смеси бисфенолов берут 6,8487 г (0,03 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 19,6798 г (0,07 моль) 1,1-дихлор-2,2-ди(4-оксифенил) этилена. Продолжительность синтеза - 4 часа.
Выход полиэфира составляет 97-98%. Приведенная вязкость 0,5%-ного раствора в 1,2-дихлорэтане равна 0,7 дл/г. Термоокислительная стойкость: 2% потери - 455-460°С. Прочность на разрыв - 92 МПа. Относительное удлинение - 20%. Огнестойкость: КИ = 42%. Температура стеклования - 235°С.
Пример 5. Синтез и выделение полимера ведут по примеру 1, только в качестве смеси бисфенолов берут 2,2829 (0,01 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 25,3026 г (0,09 моль) 1,1-дихлор-2,2-ди(4-оксифенил) этилена. Продолжительность синтеза - 3 часа.
Выход полиэфира составляет 96-98%. Приведенная вязкость 0,5%-ного раствора в 1,2-дихлорэтане равна 0,7 дл/г. Термоокислительная стойкость: 2% потери - 460-465°С. Прочность на разрыв - 95 МПа. Относительное удлинение - 15%. Огнестойкость: КИ = 45%. Температура стеклования - 247°С.
Пример 6. Синтез сополиэфира в диметилсульфоксиде
В трехгорлую коническую колбу на 250 мл, снабженную механической мешалкой, ловушкой Дина-Старка, обратным холодильником, загружают 20,5461 г (0,09 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 2,8114 г (0,01 моль) 1,1-дихлор-2,2-ди(4-оксифенил)этилена, 250 мл диметилсульфоксида, 70 мл толуола и при перемешивании и пропускании инертного газа поднимают температуру реакционной массы до 80°С. После полного растворения мономера добавляют 20,5 мл 9,77 н раствора NaOH, поднимают температуру до 140°С и отгоняют азеотропную смесь вода: толуол. Реакционную массу охлаждают до 80°С, добавляют 28,586 г (0,1 моль) 4,4'-дихлордифенилсульфона и реакцию проводят при 170°С в течение 6 часов. Раствор полимера высаждают в горячую дистиллированную воду, полимер отфильтровывают, многократно промывают водой до отрицательной реакции на ионы хлора. Полимер сушат при температуре 120°С под вакуумом в течение 24 часов.
Пример 7. Синтез и выделение полимера ведут по примеру 1, только в качестве смеси бисфенолов берут 15,9803 г (0,07 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 8,4342 г (0,03 моль) 1,1-дихлор-2,2-ди(4-оксифенил) этилена. Продолжительность синтеза - 6 часов.
Пример 8. Синтез и выделение полимера ведут по примеру 1, только в качестве смеси бисфенолов берут 11,4145 г (0,05 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 14,057 г (0,05 моль) 1,1-дихлор-2,2-ди(4-оксифенил) этилена. Продолжительность синтеза - 5 часов.
Пример 9. Синтез и выделение полимера ведут по примеру 1, только в качестве смеси бисфенолов берут 6,8487 г (0,03 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 19,6798 г (0,07 моль) 1,1-дихлор-2,2-ди(4-оксифенил) этилена. Продолжительность синтеза - 5 часов.
Пример 10. Синтез и выделение полимера ведут по примеру 1, только в качестве смеси бисфенолов берут 2,2829 (0,01 моль) 4,4'-дигидрокси-2,2-дифенилпропана, 25,3026 г (0,09 моль) 1,1-дихлор-2,2-ди(4-оксифенил) этилена. Продолжительность синтеза - 4 часа.
Приведенная вязкость полимеров, полученных по примерам 6-10 0,5%-ного раствора в 1,2-дихлорэтане равна 0,4-0,5 дл/г.
Технический результат изобретения состоит в расширении ассортимента огнестойких ароматических полиэфиров, обладающих повышенной тепло- и термостойкостью, а также высокими показателями механических характеристик.
название | год | авторы | номер документа |
---|---|---|---|
Огнестойкие ароматические полиэфирсульфоны | 2018 |
|
RU2697085C1 |
Ароматические сополиэфирсульфоны | 2020 |
|
RU2752775C1 |
Галогенсодержащие ароматические сополиэфирсульфонсульфиды | 2021 |
|
RU2779763C1 |
Галогенсодержащие ароматические сополиэфиркетоны | 2021 |
|
RU2787165C1 |
ГАЛОГЕНСОДЕРЖАЩИЕ ОЛИГОЭФИРСУЛЬФОНЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2006 |
|
RU2327710C2 |
Полиэфиры для формирования препрегов и способ их получения | 2019 |
|
RU2706345C1 |
АРОМАТИЧЕСКИЕ ОЛИГОЭФИРКЕТОНЫ ДЛЯ ПОЛИКОНДЕНСАЦИИ | 2006 |
|
RU2327680C1 |
Огнестойкий ароматический полиэфир | 2018 |
|
RU2683270C1 |
Огнестойкий ароматический полиэфирсульфон | 2017 |
|
RU2653058C1 |
Ароматические полиэфиры конструкционного назначения и способ их получения | 2019 |
|
RU2703555C1 |
Настоящее изобретение относится к ароматическим полиэфирам. Описаны ароматические полиэфиры формулы:
,
где n=1-99, m=1-99, z=1-15. Технический результат – получение ароматических полиэфиров, характеризующихся повышенными показателями огне-, термо-, теплостойкости, а также механических характеристик. 10 пр.
Ароматические полиэфиры формулы:
где n=1-99, m=1-99, z=1-15.
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ ПОЛИЭФИРОВ | 2009 |
|
RU2394848C1 |
ОГНЕСТОЙКИЕ БЛОК-СОПОЛИЭФИРСУЛЬФОНКАРБОНАТЫ | 2016 |
|
RU2629191C1 |
Блок-сополиэфирсульфоны с дихлорэтиленовыми группами | 2015 |
|
RU2621352C2 |
US 4310654 A1, 12.01.1982 | |||
JP 3041120 A, 21.02.1991. |
Авторы
Даты
2019-03-27—Публикация
2018-11-28—Подача