Способ возделывания овощных культур в закрытых почвах Российский патент 2019 года по МПК A01B79/02 C05G3/00 

Описание патента на изобретение RU2683550C1

Изобретение относится к области агротехнологий и может быть использовано для восстановления плодородия почв, загрязненных остатками пестицидов и патологических микроорганизмов, а также в лесном хозяйстве и решении проблем защиты литосферы от ксенобиотиков.

Известен способ защиты почв и дерна, загрязненных пестицидами, путем разбрызгивания водной суспензии порошкообразного активного угля (АУ) с поверхностно-активными веществами, пеноудаляющими и суспендирующими агентами на поверхность почвы из расчета 4 л суспензии на 100 м2 обрабатываемой площади (см. Патент США N 4585753, кл. B01J 20/20, B01J 10/26, опубл. 29.04.86 г.).

Недостатком известного способа является довольно низкая эффективность очистки почв, т.к. пористая структура АУ в значительной мере заблокирована органическими наполнителями, а, с другой стороны, исключение операции заделки АУ в почву приводит к его выдуванию с обработанной площади.

Наиболее близким к предложенному способу по технической сущности и количеству совпадающих признаков является способ возделывания сельхозкультур, включающий нанесение на почву субстрата: активного угля с соотношением объема микропор к суммарному объему пор 0,26-0,70, его заделку на глубину 1 -3 глубины высева семян и высев овощной тест-культуры, (см. Патент РФ №2129368, кл. A01N 25/32, А01В 29/02, опубл. 27.04.1999 г.).

Недостатком прототипа является низкая урожайность овощных культур в закрытых грунтах.

Техническим результатом (целью изобретения) является повышение урожайности овощных культур в закрытых грунтах.

Поставленная цель достигается предлагаемым способом, включающим нанесение на почву субстрата и высев семян или рассады, отличающийся тем, что в качестве субстрата используют перепревшие опилки, карбонизат шелухи подсолнечника и активный уголь в соотношении (78-81):(18-21):(0,8-1,2) соответственно, в который добавляют рабочий раствор, содержащий биопрепарат - споры гриба Trichoderma harzianum, штамм ВКМ F-4099D в соотношении субстрат - рабочий раствор (97-99):(1-3), при этом рабочий раствор биопрепарата содержит 1⋅1011-1⋅1014 спор гриба Trichoderma harzianum, штамм ВКМ F-4099D в литре раствора.

Отличие предложенного способа от прототипа состоит в том, что в качестве субстрата используют перепревшие опилки, карбонизат шелухи подсолнечника и активный уголь в соотношении (78-81):(18-21):(0,8-1,2) соответственно, в который добавляют рабочий раствор, содержащий биопрепарат - споры гриба Trichoderma harzianum, штамм ВКМ F-4099D в соотношении субстрат - рабочий раствор (97-99):(1-3), при этом рабочий раствор биопрепарата содержит 1⋅1011-1⋅1014 спор гриба Trichoderma harzianum, штамм ВКМ F-4099D в литре раствора.

Авторам из патентной и научно-технической литературы не известен способ возделывания овощных культур в закрытых грунтах, где в качестве субстрата используют перепревшие опилки, карбонизат шелухи подсолнечника и активный уголь в соотношении (78-81):(18-21):(0,8-1,2) соответственно, в который добавляют рабочий раствор, содержащий биопрепарат - споры гриба Trichoderma harzianum, штамм ВКМ F-4099D в соотношении субстрат -рабочий раствор (97-99):(1-3), при этом рабочий раствор биопрепарата содержит 1⋅1011-1⋅1014 спор гриба Trichoderma harzianum, штамм ВКМ F-4099D в литре раствора.

Сущность предлагаемого способа состоит в следующем.

Перепревшие опилки, взятые в качестве основы субстрата, являются более доступным материалом для усваивания спорами гриба Trichoderma harzianum, штамм ВКМ F-4099D, необходимым для роста семян или рассады.

Выбор карбонизата шелухи подсолнечника обусловлен тем, что в процессе заделки ее в перепревшие опилки она начинает перегнивать и, следовательно, дает пролонгированное питание спорам гриба Trichoderma harzianum, штамм ВКМ F-4099D.

Активный уголь выполняет важную функцию по обеспечению экологичности среды для развития и жизнедеятельности спор гриба Trichoderma harzianum, штамм ВКМ F-4099D, удаляя токсичные продукты его жизнедеятельности. Таким образом, весь материал субстрата работает как единый целый питательный блок для спор гриба Trichoderma harzianum, штамм ВКМ F-4099D и является широкодоступным материалом, а, кроме того, и утилизируемым растительным отходом.

Предлагаемый способ осуществляют следующим образом. Готовят основу субстрата: перепревшие опилки размером 0,1-0,3 мм, карбонизат шелухи подсолнечника размером 0,3-3,0 мм и активный уголь с размером частиц 0,1-1,5 мм в соотношении (78-81):(18-20):(0,8-1,2) соответственно, загружают их последовательно в аппарат смешения (типа корыта) и перемешивают в течении 5-15 минут.

Затем в выбранной емкости готовят водный рабочий раствор спор гриба Trichoderma harzianum, штамм ВКМ F-4099D (Т h), поддерживая его концентрацию в растворе на уровне 1⋅1011-1⋅1014 микроорганизмов в литре раствора.

Загружают основу субстрата в аппарат смешивания (типа корыта), равномерно поливают его раствором биопрепарата Т h, после чего перемешивают в течение 5-15 минут для равномерного распределения микроорганизмов в основе субстрата.

Приготовленный субстрат закладывают соответственно выбранной для данного тепличного хозяйства технологии и производят посадку в него семян или рассады овощных культур.

Оценку повышения урожайности определяли в вегетационных опытах в камере искусственного климата (аналога теплицы с закрытым грунтом). Для высева тест-культуры использовали горшки вместимостью 600 г почвы, которые заполняли приготовленным субстратом и проводили выращивание растения. По истечении 30 суток оценивали среднюю массу тест-растения путем срезания зеленой массы по уровню верха горшка.

Возделывание по предлагаемому способу овощных культур в закрытых грунтах позволило повысить урожайность на 90-130%.

Пример 1. Берут 7,9 кг перепревших опилок, 20,88 кг карбонизата шелухи подсолнечника и 0,12 кг активного угля марки МеКС (ТУ 6-16-28-1611-95), что соответствует соотношению 78:21:1, и загружают их последовательно в аппарат смешения, после чего перемешивают лопатой в течение 5-15 минут. Затем берут 1 л воды и готовят рабочий раствор биопрепарата, поддерживая концентрацию спор гриба Т h в растворе 1⋅1011 в литре раствора. Приготовленным раствором поливают основу субстрата при соотношении основы субстрата - водный раствор микроорганизмов в соотношении 97:3 и снова тщательно перемешивают в течение 5-15 минут. Закладывают приготовленный субстрат в вегетационный горшок и производят высев рассады томата, после чего устанавливают горшок в камеру искусственного климата. По истечении 30 суток производят учет наземной зеленой массы растения томата путем срезания вегетирующих растений по уровню края горшка и сравнивают эту массу с весом зеленой массы растения томат, выращенного на почве, полученой по прототипу (Пат.РФ №2129368).

Урожайность тест-растения томат в вегетационном опыте по предлагаемому способу была на 80% выше, чем у прототипа.

Пример 2. Проведение процесса как в примере 1, за исключением того, что соотношение компонентов основы субстрата: перепревших опилок, карбонизата шелухи подсолнечника и активного угля составляло 81:18:1. Рабочий раствор содержал 1⋅1014 спор гриба Т h, а соотношение основы субстрата и рабочего раствора составляло 97:3. В качестве тест-растения использовали редис.

Урожайность тест-растения редис в вегетационном опыте по предлагаемому способу была на 110% выше, чем у прототипа.

Пример 3. Проведение процесса как в примере 1, за исключением того, что соотношение компонентов основы субстрата: перепревших опилок, карбонизата шелухи подсолнечника и активного угля составляло 80:19,2:0,8. Рабочий раствор содержал 1⋅1012 спор гриба Т h, а соотношение основы субстрата и рабочего раствора микроорганизмов составляло 98:2. В качестве тест-растения использовали томат.

Урожайность тест-растения томат в вегетационном опыте по предлагаемому способу была на 130% выше, чем у прототипа.

Пример 4. Проведение процесса как в примере 1, за исключением того, что соотношение компонентов основы субстрата: перепревших опилок, карбонизата шелухи подсолнечника и активного угля составляло 78:20,8:1,2. Рабочий раствор содержал 1⋅1012 спор гриба Т h, а соотношение основы субстрата и рабочего раствора микроорганизмов составляло 98:2. В качестве тест-растения использовали томат.

Урожайность тест-растения томат в вегетационном опыте по предлагаемому способу была на 125% выше, чем у прототипа.

Таким образом, как следует из примеров 1-4, предлагаемый способ позволяет повысить урожайность овощных культур в закрытых грунтах на 80-130% по отношению к прототипу (Пат.РФ №2129368).

Многочисленные эксперименты в процессе разработки показали, что, если доля перепревших опилок в основе субстрата меньше 79, то повышение урожайности ниже вследствие снижения питательных свойств основы субстрата, а, если доля перепревших опилок более 81, то снижается период пролонгированности питательного субстрата.

Если доля карбонизата шелухи подсолнечника ниже 18, то также снижается период пролонгированности субстрата, если доля шелухи подсолнечника выше 21, то снижаются его питательные свойства.

Если доля активного угля в основе субстрата ниже 0,8, то споры гриба Т h плохо развиваются, т.к. недостаточно поглощаются их токсичные выделения. А, если доля активного угля выше 1,2, то идет уже поглощение питательных веществ, наработанных спорами гриба за счет сорбции их в микропорах активного угля.

Во всех случаях выхода за верхние или нижние интервалы долей компонентов в основе субстрата происходит снижение урожайности.

При снижении доли основы субстрата при пропитке рабочим раствором спор гриба Т h ниже 97 сокращается период пролонгированного питания растений, а, если она больше 99, то плохо работают споры гриба Т h ввиду их недостаточности; то же можно сказать, если доля спор гриба Т h в субстрате ниже 1, а, если доля спор гриба Т h выше 3, то это экономически нецелесообразно.

Относительно концентрации спор гриба Т h в рабочем растворе отмечено, что, если она меньше 1⋅1011 в литре раствора, то их недостаточно для эффективной переработки основы субстрата, а, если концентрация спор гриба Т h выше 1⋅1014 в литре раствора, то они быстро перерабатывают основу субстрата, сокращая период продуктивного питания растений.

Таким образом из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на достижение поставленной цели, а вся совокупность является достаточной для характеристики заявленного технического решения.

Похожие патенты RU2683550C1

название год авторы номер документа
СПОСОБ ЗАЩИТЫ РАСТЕНИЙ ОГУРЦА И ТОМАТА ОТ ФИТОПАТОГЕНОВ 1993
  • Гринько Н.Н.
  • Тарасенко В.С.
RU2094991C1
СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКОГО СРЕДСТВА ДЛЯ ЗАЩИТЫ РАСТЕНИЙ ОТ ФИТОПАТОГЕНОВ И НЕМАТОД НА ОСНОВЕ ШТАММА ГРИБА РОДА TRICHODERMA И БИОЛОГИЧЕСКОЕ СРЕДСТВО, ПОЛУЧЕННОЕ СПОСОБОМ 2012
  • Тазетдинова Диана Ирековна
  • Алимова Фарида Кашифовна
RU2534213C2
УСКОРИТЕЛЬ РОСТА КОРНЕВОЙ СИСТЕМЫ РАСТЕНИЙ (ВАРИАНТЫ) 2022
  • Амелин Андрей Анатольевич
  • Шапиро Юрий Михайлович
RU2800257C1
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ ОТХОДОВ 2011
  • Кураков Александр Васильевич
  • Садыкова Вера Сергеевна
RU2467989C2
Штамм бактерий Bacillus subtilis subspecies subtilis krd-20 - продуцент фунгистатических липопептидов 2022
  • Копыльцов Сергей Васильевич
  • Елисютикова Анастасия Васильевна
  • Милованов Александр Валерьевич
  • Гнеуш Анна Николаевна
  • Кощаев Андрей Георгиевич
  • Табачникова Алла Александровна
RU2802234C1
Штамм гриба Trichoderma asperellum для получения биопрепарата комплексного действия для растениеводства 2016
  • Егоршина Анна Александровна
  • Лукьянцев Михаил Александрович
  • Зиганшин Данис Дамирович
  • Лесянкина Юлия Валерьевна
  • Лапина Ольга Игоревна
  • Шаймуллина Гульназ Хидиятовна
  • Давлетбаев Игорь Маратович
RU2634415C1
Способ получения биопрепарата для обработки растений 2016
  • Егоршина Анна Александровна
  • Лукьянцев Михаил Александрович
  • Зиганшин Данис Дамирович
  • Захаров Вадим Валерьевич
  • Бадрутдинов Нияз Вакифович
RU2658430C1
ШТАММ ГРИБА TRICHODERMA SP. МГ-97, ИСПОЛЬЗУЕМЫЙ ДЛЯ ЗАЩИТЫ СЕЯНЦЕВ ХВОЙНЫХ ОТ ФУЗАРИОЗОВ 1999
  • Громовых Т.И.
  • Шмарловская С.В.
  • Тюльпанова В.А.
  • Громовых В.С.
RU2171580C1
ШТАММ БАКТЕРИЙ Bacillus amyloliquefaciens subsp. plantarum BS89 В КАЧЕСТВЕ СРЕДСТВА ПОВЫШЕНИЯ ПРОДУКТИВНОСТИ РАСТЕНИЙ И ИХ ЗАЩИТЫ ОТ БОЛЕЗНЕЙ 2015
  • Чеботарь Владимир Кузьмич
  • Ерофеев Сергей Викторович
RU2599416C1
БИОПРЕПАРАТ ДЛЯ СТИМУЛЯЦИИ РОСТА РАСТЕНИЙ И ИХ ЗАЩИТЫ ОТ ФИТОПАТОГЕНОВ НА ОСНОВЕ ШТАММОВ TRICHODERMA, ШТАММЫ TRICHODERMA ДЛЯ ЕГО ПРОИЗВОДСТВА (ВАРИАНТЫ), СПОСОБ ПОЛУЧЕНИЯ БИОПРЕПАРАТА НА ОСНОВЕ ТАКИХ ШТАММОВ 2015
  • Лягушина Ольга Анатольевна
  • Сидякин Андрей Иванович
RU2607785C2

Реферат патента 2019 года Способ возделывания овощных культур в закрытых почвах

Изобретение относится к сельскому хозяйству. Способ возделывания овощных культур в закрытых почвах включает нанесение на почву субстрата и высев семян или рассады, при этом в качестве субстрата используют перепревшие опилки, карбонизат шелухи подсолнечника и активный уголь в соотношении (78-81):(18-21):(0,8-1,2) соответственно, в который добавляют рабочий раствор, содержащий биопрепарат - споры гриба Trichoderma harzianum, штамм ВКМ F-4099D в соотношении субстрат : рабочий раствор (97-99):(1-3). Изобретение позволяет повысить урожайность овощных культур в закрытых грунтах. 1 з.п. ф-лы, 4 пр.

Формула изобретения RU 2 683 550 C1

1. Способ возделывания овощных культур в закрытых почвах, включающий нанесение на почву субстрата и высев семян или рассады, отличающийся тем, что в качестве субстрата используют перепревшие опилки, карбонизат шелухи подсолнечника и активный уголь в соотношении (78-81):(18-21):(0,8-1,2) соответственно, в который добавляют рабочий раствор, содержащий биопрепарат - споры гриба Trichoderma harzianum, штамм ВКМ F-4099D в соотношении субстрат : рабочий раствор (97-99):(1-3).

2. Способ по п. 1, отличающийся тем, что рабочий раствор биопрепарата содержит 1⋅1011-1⋅1014 спор гриба Trichoderma harzianum, штамм ВКМ F-4099D в литре раствора.

Документы, цитированные в отчете о поиске Патент 2019 года RU2683550C1

СПОСОБ ЗАЩИТЫ ПОЧВ ОТ КСЕНОБИОТИКОВ 1998
  • Мухин В.М.
  • Спиридонов Ю.Я.
  • Шестаков В.Г.
RU2129368C1
АВТОМАТИЧЕСКИЙ ТОРМОЗ ДЛЯ РЕГУЛИРОВАНИЯ СКОРОСТИ ВРАЩЕНИЯ ВАЛА 1925
  • Пучкелевич А.Л.
SU3194A1
CN 104109046 A, 22.10.2014
Стернифаг-биологический фунгицид, Стернифаг-биологический фунгицид, 2014-04-21, [найдено 2019-02-21]
Способ и приспособление для получения штриховой копии с полутонового оригинала 1932
  • Озеров Н.Н.
SU36174A1

RU 2 683 550 C1

Авторы

Спиридонов Юрий Яковлевич

Балакарев Владимир Георгиевич

Мухин Виктор Михайлович

Даты

2019-03-28Публикация

2018-06-13Подача