СПОСОБ ПРОИЗВОДСТВА БРОНЕЗАЩИТНОЙ СТРУКТУРЫ НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ С ЛОКАЛИЗОВАННЫМ ОБЪЕМОМ УПРОЧНЕНИЯ Российский патент 2019 года по МПК C25D11/04 F41H5/00 

Описание патента на изобретение RU2686501C1

Изобретение относится к области технологий производства бронезащитных материалов.

Один из способов упрочнения пористого алюминия заключается в внедрении в его поры керамического материала на основе оксида алюминия (Al2O3). Существуют способы получения керамики на основе оксида алюминия: RU 2176985, RU 2013128751, RU 2128153, RU 2205152, RU 2485074, RU 2280016. Данные способы основаны на процессе спекания заранее изготовленного мелкодисперсного порошка оксида алюминия при больших температурах, но применение данных способов для образования керамического слоя на поверхности пор не применимо ввиду большой температуры спекания, превышающей температуру плавления алюминиевой матрицы. Помимо данного недостатка данными способами невозможно сформировать локализованный объем упрочнения, поскольку не существует способа задать границы его формирования при воздействии высоких температур. Существуют способы получения оксида алюминия на поверхности алюминия, основанные на методе микродугового оксидирования: RU 2123546, RU 2361970, RU 2377341, RU 2483144, RU 2495161. Технический результат данных способов направлен на совершенствование процесса нанесения керамических покрытий на металлы вентильной группы, основной недостаток которых заключается в статическом воздействии электролита на оксидируемый образец, что делает невозможным оксидирование внутриобъемного пространства пористой алюминиевой структуры. Наиболее близким прототипом по способу получения керамического оксида алюминия в объеме пористого алюминия является изобретение RU 2621527, которое состоит в том, что заготовки из пористого открытоячеистого алюминия помещаются в емкость с однокомпонентным электролитом с жидким стеклом и подвергаются микродуговому оксидированию в анодно-катодном режиме с падающей мощностью в течение не менее 120 минут, при оксидировании на заготовках из пористого алюминия осуществляется выступ с прямоугольным профилем со сторонами 10×150 мм, который служит токопроводом для подвода электрического тока, а также в применении в процессе оксидирования системы принудительного охлаждения и компрессора для циркулирования электролита с давлением не менее 0,8 МПа. Причинами, препятствующими получению технического результата данным изобретением, является отсутствие технологических процессов по формированию границ контура локализации объема пор подвергаемых оксидированию и подачи в данный объем электролита, что делает невозможным формирование в единой открытоячеестой алюминиевой матрице двух или более слоев с различными механическими параметрами.

Технический результат изобретения состоит в обеспечении возможности формирования в единой алюминиевой пористой матрице одного или более объемов пор, упрочненных методом микродугового оксидирования, разделенных с неоксидированным объемом пор четкой границей.

Способ производства бронезащитной структуры на основе пористого алюминия с локализованным объемом упрочнения предназначен для формирования в единой алюминиевой пористой матрице одного или более объемов пор, упрочненных методом микродугового оксидирования, разделенных с неоксидированным объемом пор четкой границей. Способ производства включает четыре этапа. На первом этапе производится механическая обработка заготовки из пористого алюминия и придание ей формы, соответствующей геометрии защищаемого объекта. Форма может быть, как пластиной в виде параллепипеда, так и содержать изгибы и углы. Толщина пластины зависит от заданных критериев стойкости, но не может быть мене 10 мм. На одной из торцевых сторон заготовки пластины заранее проектируется и вытачивается выступ высотой не менее 50 мм с поперечным сечением в виде окружности. Диаметр окружности соответствует толщине пластины. Данный профиль служит токопроводом и гидропроводом для подвода электрического тока и электролита объему пор подвергающемуся микродуговому оксидированию. На втором этапе формованная заготовка из пористого алюминия с изготовленным на ней выступом помещается в центрифугу. Центрифуга представляет собой цилиндрическую емкость, на дне которой по центру закреплен вертикальный вал, соединенный с электродвигателем. Перпендикулярно оси вала к нему прикреплены не менее четырех рычагов с расположенными по краям стаканами. Под рычагами расположены нити нагревательного элемента, размещенные радиально относительно дна емкости и оси вала. Под нагревательными элементами расположены лопасти крыльчатки, закрепленной соосно на валу. Заготовки выступами помещаются в стаканы так чтобы стороны не предназначенные для оксидирования располагались во внутрь емкости. Далее берется губчатый мягкий материал, в качестве которого может использоваться войлок либо поролон. Форма материала должна быть идентичной профилю заготовки. Губчатый материал пропитывается заранее подготовленным жидким гидрофобным диэлектрическим полимером. Далее материал крепится к стороне заготовки, не предназначенной для оксидирования клейкой лентой либо проволокой. Аналогичная операция проводится со всеми заготовками помещенными в центрифугу. Далее запускается двигатель центрифуги, заготовки начинают вращаться относительно оси вала. Под действием центростремительной силы жидкий гидрофобный диэлектрический полимер перетекает из губчатого материала в тело заготовки. Одновременно при вращении вала происходит нагрев нитей и выделение тепла, а под действием потоков воздуха, создаваемых крыльчаткой, тепло конвектирует вокруг заготовок. Под действием теплового эффекта жидкий гидрофобный диэлектрический полимер застывает на заданной толщине пористого объема заготовки, тем самым формируя границу локализованного объема, который будет подвержен микродуговому оксидированию за счет образования на стенках пор объема не предназначенного оксидированию тонкого слоя диэлектрика. Время работы центрифуги, а также технологические параметры (скорость вращения, температура нагрева нитей), подбираются опытным путем и зависят от геометрических параметров заготовки и количества необходимых к формированию объемов предназначенных для оксидирования. Если задачей является локализация объема упрочнения, который будет расположен по центру общего объема заготовки, то после пропитки жидким гидрофобным диэлектрическим полимером на заданную толщину с одной стороны расположение заготовок в центрифуге меняется другой стороной, и операция повторяется. На третьем этапе подготовленные после центрифуги заготовки помещаются в установку для последующего оксидирования локализованного объема и наращивания в нем упроченного слоя оксида алюминия. Установка для оксидирования локализованного объема пористого алюминия состоит из ванны, в которую заливается смесь электролита с жидким натриевым стеклом, компрессора для осуществления подачи электролита под давлением, охлаждающего устройства, электрических проводов, распределительной рампы и патрубков, соединяющих элементы установки. Заготовки помещаются в ванну с электролитом выступами вверх, на выступы наматываются электрические провода, которые проходят через патрубки. После надежного подсоединения проводов сверху одеваются резиновые патрубки так, чтобы зона соединения проводов оказалась внутри патрубка. Далее на местах соединения выступа с патрубками затягиваются хомуты для герметизации. Концы патрубков соединяются с распределительной рампой. Особенность патрубков заключается в том, что во внутреннем объеме расположен электрический провод, который через уплотненное отверстие выходит наружу для последующего соединения с энергетической конденсаторной установкой. Распределительная рампа соединяется патрубками с устройством охлаждения электролита, компрессором и ванной в единый контур. Выступы на заготовках обеспечивают непрерывную проводимость электрического тока и подачу под давлением в локализованный объем заготовки электролита. Поскольку на стенки пор остального объема заготовки нанесен слой диэлектрика, то площадь пор заключенная в данном объеме не будет участвовать в электрохимической реакции оксидирования. Упрочненный слой оксида алюминия будет формироваться в заданном локализованном объеме пор. На четвертом этапе заготовки прошедшие стадию формирования локализованного объема упрочнения подвергаются механической обработке, в процессе которой выступы удаляются.

На фиг. 1, фиг. 2 и фиг. 3 изображены виды сверху, сбоку и снизу схемы расположения заготовок из пористого алюминия в центрифуге, где заготовки 1 с выступами 2 помещены в стаканы 3, расположенные на рычагах 4, закрепленных на валу 5, под рычагами расположены нити нагревательного элемента 6 и лопасти крыльчатки 7, все узлы закреплены в корпусе центрифуги 8, к одной из сторон заготовок прикреплен губчатый материал 9. На фиг. 4 изображена схема расположения заготовок из пористого алюминия со сформированным контуром объема упрочнения в установке для оксидирования, где к заготовкам помещенным в ванну с электролитом 10 подсоединены электрические провода 11, находящиеся в патрубках 12, закрепленных одним концом на выступах заготовок хомутами 13, другим концом на распределительной рампе 14, которая патрубками 15, 16 и 17 соединена в единый контур с компрессором 18 и устройством охлаждения электролита 19.

Осуществление способа производства бронезащитной структуры на основе пористого алюминия может быть произведено в следующем примере. Изготавливаются заготовки из пористого алюминия с приданием ей формы соответствующей геометрии защищаемого объекта и выступом (токопроводом и гидропроводом) как представлено на фиг. 4. Далее заготовки выступами 2 помещаются в стаканы центрифуги, как представлено на фиг. 1, фиг. 2 и фиг. 3. Подготавливается губчатый материал 9 путем пропитки его в жидком гидрофобном диэлектрическом полимере, который при помощи проволки или клейкой ленты крепится к стороне заготовки обращенной внутрь центрифуги. Далее запускается центрифуга на заданное время. В процессе вращения полимер перетекает в поры заготовки и под действием конвекции тепла, создаваемой нагревательными элементами 6 и крыльчаткой 7, затвердевает и образует на стенках пор неоксидируемого слоя диэлектрический слой. Затем заготовки помещаются в установку для оксидирования, как показано на фиг. 2. К выступам заготовок подсоединяются провода 11 и патрубки 12, которые закрепляются хомутами 13. Концы проводов подсоединяются к энергетической конденсаторной установке. Далее устройство оксидирования запускается. Компрессор 18 начинает подавать под давлением электролит на распределительную рампу, которая распределяет потоки по патрубкам. Электролит под давлением проникает во внутренний объем заготовки и под воздействием электрического тока происходит электрохимическая реакция на поверхности стенок пор в объеме, который не был подвержен пропитки гидрофобным диэлектрическим полимером. После оксидирования формируется структура сочетающая в себе несколько чередующихся слоев, ограниченных объемом пор с образовавшимся слоем оксида алюминия и без него. После оксидирования заготовки извлекаются из установки, а выступы механическим путем удаляются.

Похожие патенты RU2686501C1

название год авторы номер документа
БРОНЕЗАЩИТНАЯ СТРУКТУРА НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ С ЛОКАЛИЗОВАННЫМ ОБЪЕМОМ УПРОЧНЕНИЯ 2018
  • Воробьев Иван Семенович
RU2680948C1
БРОНЕЗАЩИТНАЯ СТРУКТУРА НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ И СПОСОБ ЕЁ ПРОИЗВОДСТВА 2016
  • Соколов Илья Валерьевич
RU2621527C1
СПОСОБ ПОЛУЧЕНИЯ БЕСПОРИСТОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ 2019
  • Орыщенко Алексей Сергеевич
  • Марков Михаил Александрович
  • Красиков Алексей Владимирович
  • Быкова Алина Дмитриевна
  • Беляков Антон Николаевич
RU2713763C1
Теплопередающая стенка теплообменника и способ формирования покрытия для интенсификации теплообмена теплопередающей стенки теплообменника 2021
  • Никифоров Алексей Александрович
  • Павленко Александр Николаевич
  • Куприков Михаил Юрьевич
  • Печеркин Николай Иванович
  • Катаев Андрей Иванович
  • Володин Олег Александрович
  • Миронова Ирина Борисовна
RU2793671C2
Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах 2018
  • Орыщенко Алексей Сергеевич
  • Марков Михаил Александрович
  • Красиков Алексей Владимирович
  • Улин Игорь Всеволодович
  • Геращенков Дмитрий Анатольевич
  • Кузнецов Павел Алексеевич
  • Васильев Алексей Филиппович
  • Быкова Алина Дмитриевна
RU2678045C1
СПОСОБ ФОРМИРОВАНИЯ БАРЬЕРНОГО ПОКРЫТИЯ НА ПАЯНЫХ АЛЮМИНИЕВЫХ ЭЛЕКТРОДАХ ГЕНЕРАТОРА ОЗОНА 2016
  • Крамаренко Александр Евгеньевич
  • Крамаренко Евгений Иванович
  • Горбатский Юрий Васильевич
  • Сторчай Евгений Иванович
  • Смородин Анатолий Иванович
RU2640586C1
Композиционное износостойкое химическое покрытие и способ его получения 2023
  • Крутских Вячеслав Михайлович
  • Герасимов Михаил Владимирович
  • Жуликов Владимир Владимирович
RU2812435C1
Способ получения функционально-градиентных покрытий на металлических изделиях 2021
  • Хорев Александр Васильевич
  • Фот Максим Геннадьевич
  • Геращенков Дмитрий Анатольевич
  • Марков Михаил Александрович
  • Пантелеев Игорь Борисович
  • Олонцев Егор Олегович
RU2763698C1
Способ нанесения износостойкого покрытия на сталь 2017
  • Васильев Алексей Филиппович
  • Красиков Алексей Владимирович
  • Ешмеметьева Екатерина Николаевна
  • Марков Михаил Александрович
  • Бобкова Татьяна Игоревна
  • Орданьян Сукяс Семенович
RU2695718C1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ЕГО ПОВЕРХНОСТИ 2009
  • Бокштейн Борис Самуилович
  • Родин Алексей Олегович
  • Ракоч Александр Григорьевич
  • Бардин Илья Вячеславович
  • Долгополов Николай Александрович
  • Симанов Андрей Всеволодович
  • Гладкова Александра Александровна
  • Ковалев Василий Леонидович
RU2421536C1

Иллюстрации к изобретению RU 2 686 501 C1

Реферат патента 2019 года СПОСОБ ПРОИЗВОДСТВА БРОНЕЗАЩИТНОЙ СТРУКТУРЫ НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ С ЛОКАЛИЗОВАННЫМ ОБЪЕМОМ УПРОЧНЕНИЯ

Изобретение относится к области технологий производства бронезащитных материалов. Способ включает изготовление заготовок из пористого алюминия с приданием им формы, соответствующей геометрии защищаемого объекта, при этом на торцевой стороне заготовки вытачивают выступ с поперечным сечением в виде окружности для подвода электрического тока и электролита к объему пор, подвергаемых микродуговому оксидированию (МДО), далее контур локализации объема пор, подвергаемого МДО, фиксируют путем пропитки пор неоксидируемого слоя заготовки на заданную глубину гидрофобным диэлектрическим полимером с применением центрифуги, затем проводят упрочнение локализованного объема пор заготовок МДО в ванне с электролитом с применением системы принудительного охлаждения и циркуляции электролита, а после МДО выступы на заготовках механически удаляют. Технический результат: обеспечение возможности формирования в единой алюминиевой пористой матрице одного или более объемов пор, упрочненных методом МДО, разделенных с неоксидированным объемом пор четкой границей. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 686 501 C1

1. Способ производства бронезащитной структуры на основе пористого алюминия с локализованным объемом упрочнения, включающий изготовление заготовок из пористого алюминия с приданием им формы, соответствующей геометрии защищаемого объекта, отличающийся тем, что на торцевой стороне заготовки вытачивают выступ с поперечным сечением в виде окружности для подвода электрического тока и электролита к объему пор, подвергаемых микродуговому оксидированию (МДО), далее контур локализации объема пор, подвергаемого МДО, фиксируют путем пропитки пор неоксидируемого слоя заготовки на заданную глубину гидрофобным диэлектрическим полимером с применением центрифуги, затем проводят упрочнение локализованного объема пор заготовок МДО в ванне с электролитом с применением системы принудительного охлаждения и циркуляции электролита, а после МДО выступы на заготовках механически удаляют.

2. Способ по п. 1, отличающийся тем, что принудительную циркуляцию электролита осуществляют непосредственной его подачей под давлением на выступы заготовок через патрубки, подсоединенные к распределительной рампе.

Документы, цитированные в отчете о поиске Патент 2019 года RU2686501C1

БРОНЕЗАЩИТНАЯ СТРУКТУРА НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ И СПОСОБ ЕЁ ПРОИЗВОДСТВА 2016
  • Соколов Илья Валерьевич
RU2621527C1
СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ 1991
  • Малышев Владимир Николаевич[By]
  • Малышева Наталья Васильевна[By]
  • Богданов Андрей Константинович[By]
RU2026890C1
Блочко для гиревых часов 1927
  • Романов В.Д.
SU8198A1
СПОСОБ ИЗГОТОВЛЕНИЯ ХУДОЖЕСТВЕННЫХ ИЗДЕЛИЙ 0
SU346398A1

RU 2 686 501 C1

Авторы

Воробьев Иван Семенович

Даты

2019-04-29Публикация

2018-04-04Подача