БРОНЕЗАЩИТНАЯ СТРУКТУРА НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ С ЛОКАЛИЗОВАННЫМ ОБЪЕМОМ УПРОЧНЕНИЯ Российский патент 2019 года по МПК F41H5/04 

Описание патента на изобретение RU2680948C1

Изобретение относится к области броневых материалов для защиты от поражающих факторов взрывных боеприпасов.

Существует отдельный подкласс средств индивидуальной бронезащиты (СИБ), характеризуемый как средства боевой экипировки подразделений, выполняющих задачу по разминированию местности и объектов. Отличие данных средств во многом связано с работой в среде высоковероятного воздействия поражающих факторов различной природы, таких как взрывные газы, обладающие высоким давлением и температурой, воздушная ударная волна, площадной характер воздействия поражающих элементов (осколков). В большинстве случаев проектирование СИБ сводится к формированию защитного экрана с площадью, покрывающей зону жизненно-важных органов человека (сердце и легкие), а основным критерием, определяющим эффективность данных средств, служит скорость непробития поражающим элементом стрелкового оружия при единичном взаимодействии. В данных условиях наиболее применимы и экономически выгодны бронезащитные структуры на основе керамики, в большинстве своем основанной на оксиде алюминия (Al2O3). Примерами таких структур являются следующие изобретения и полезные модели: RU 2308660, RU 130061, RU 2484412, RU 2459174, RU 2570129, RU 150019, RU 111906.

Данные технические решения броневых структур основаны на сочетании других бронезащитных материалов в комплексе с керамическими элементами, которые обеспечивают не только диссипацию кинетической энергии поражающего элемента, но и распределение и снижение остаточного воздействия на биоматериалы человека. Основным недостатком данных бронезащитных структур является низкая площадная стойкость к одновременному взаимодействию потока поражающих элементов, поскольку структуры на основе керамики имеют свойство высокого трещинообразования по всей площади и объему бронеэлемента, соответственно и заброневой эффект воздействия будет достаточным, чтобы повредить биоматериал человека. Помимо озвученного недостатка структуры на основе керамики не обладают свойствами перколяции и девиации ударно-волнового воздействия продуктов взрыва. Каждый фактор поражения, связанный с задачей по разминированию местности и объектов, формирует свою систему физических параметров, определяющих принципы обеспечения диссипации энергии бронезащитным материалом или сочетанием бронезащитных материалов (структурой).

Проблемным вопросом в решении задачи полного обеспечения эффекта стойкости ко всем поражающим факторам является отсутствие мультипликативной бронезащитной структуры, основанной на гомогенном материале с нерегулярными поверхностью и объемом, с внедрением в него упрочняющих субстанций. В качестве такой структуры возможны к применению пористые материалы на основе алюминия, поскольку алюминий позволяет получать гетерогенную структуру микродуговым оксидированием в виде сочетания неоксидированного алюминия и оксида алюминия. Наиболее близким прототипом изобретения является изобретение RU 2621527, состоящее из пористого открытоячеистого алюминия, содержащего 60-70% открытых взаимосообщающихся пор с диаметром в диапазоне от 0,14 мм до 0,5 мм, на поверхность которых микродуговым оксидированием нанесен слой оксида алюминия с последующей пропиткой в эпоксидной смоле. Данное изобретение решает проблему стойкости к воздействию потока поражающих элементов на основе эффекта по снижению трещинообразования относительно площади взаимодействия с поражающим элементом, одновременно сохраняя легкость бронеэлемента. Основным недостатком данного изобретения, препятствующим получению технического результата, является закрытость пор слоем оксида алюминия по всему объему бронеструктуры, что препятствует затеканию ударно-волнового потока в поры за счет эффекта перколяции и последующему распределению потока за счет девиации в межпорном пространстве. Еще одним недостатком данного изобретения является изотропность данной структуры, что обязывает включать в состав конечного бронепакета дополнительные подпорные структуры, обеспечивающие диссипацию остаточной энергии поражающих элементов и самой бронезащитной структуры.

Предлагаемая бронезашитная структура основана на пористом открытоячеистом алюминии с разделенным объемом пор с нанесенным микродуговым оксидированием слоем оксида алюминия и порами с неоксидированной поверхностью. Объем пор, упрочненных оксидированием, локализован в общем объеме пористой структуры и имеет четкую границу раздела упрочнения микродуговым оксидированием, при этом сохраняя общий алюминиевый каркас с неоксидированным объемом. Контур объема пор с нанесенным слоем оксида алюминия представляет собой любую геометрическую трехмерную фигуру и определяется исходя из геометрических особенностей формы защищаемого объекта или элемента объекта. Локализованный объем пор с нанесенным слоем оксида алюминия может быть, как больше, так и меньше объема пор без нанесенного слоя оксида алюминия. Отношение толщины слоя, образованного локализованным объемом пор с нанесенным слоем оксида алюминия, к общей толщине структуры - не менее 1/9 и не более 8/10 линейного размера общей толщины структуры. Количество чередований локализованного объема пор с нанесенным слоем оксида алюминия и объема пор без нанесенного слоя оксида алюминия неограниченно в рамках общей геометрии структуры. При производстве структуры на поверхность пор объема, не предназначенного для упрочнения микродуговым оксидированием, может быть нанесен слой диэлектрического полимера, который сохраняется на весь срок применения бронезащитной структуры.

Технический результат изобретения основан на сочетании в пористой гомогенной структуре путем локализации объема упрочнения, механических свойств, обеспечивающих эффект рассеивания и диссипации ударно-волнового воздействия продуктов взрыва, диссипации энергии потока поражающих элементов со снижением уровня трещинообразования и диссипации остаточной энергии без применения дополнительных подпорных структур.

На фиг. 1 и фиг. 2 изображена схема, определяющая состав бронезащитного материала на основе пористого алюминия с локализованным объемом упрочнения, где в заготовке из пористого открытоячеистого алюминия имеется объемом пор 1 с нанесенным микродуговым оксидированием слоем оксида алюминия и объем пор 2 без нанесенного слоя оксида алюминия, граница раздела упрочнения микродуговым оксидированием 3, общий алюминиевый каркас 4, поры 5, граница раздела алюминиевого каркаса с пустым объемом пор 6, внешний слой оксида алюминия на внутренней поверхности пор 7, слой оксида алюминия внутри алюминиевого каркаса 8, внешний слой диэлектрического полимера на внутренней поверхности пор 9. На фиг. 3 изображено возможное сочетание локализованного объема пор с нанесенным микродуговым оксидированием слоем оксида алюминия, где локализованный объем расположен по центру общего объема структуры. На фиг. 4 изображено возможное сочетание, где локализованный объем пор расположен центральным слоем в общем объеме структуры. На фиг. 5 изображено возможное сочетание, где локализованный объем разделен на два внешних слоя, а между ними расположен объем без нанесенного слоя оксида алюминия.

Осуществление бронезащитной структуры на основе пористого алюминия с локализованным объемом упрочнения происходит путем изготовления заданной формы и свойствами бронезащитных элементов для средств боевой экипировки подразделений, выполняющих задачу по разминированию местности и объектов. Свойства структуры регулируются путем установки толщины, расположения и количества объемов 1, представленных на фиг. 1 и фиг. 2. Если проектируется средство для работы в среде, где наиболее вероятным является ударно-волновое воздействие продуктов взрыва, но с возможным воздействием потока поражающих элементов, то наиболее эффективным будет сочетание, представленное на фиг. 3 или фиг. 4. При данном сочетании локализации объема упрочнения ударно-волновой поток сжатых газов будет свободно проходить через открытые поры верхнего неупрочненного слоя объема 2, что приведет к эффекту перколяции и распределению давления потока по всему объему неупрочненных пор. Заполнив данный объем, поток задержит преграда из локализованного объема оксидированных пор 1 с последующей его девиацией в обратном направлении, что приведет к конечному разрушению верхнего слоя объема 2 с сопровождающейся диссипацией энергии потока. Остаточное давление, создаваемое верхним слоем объема 2 и локализованным объемом 1, будет поглощено за счет диссипации энергии работой деформации нижнего слоя объема 2. В случае одновременного воздействия ударно-волнового потока и потока поражающих элементов слой, образованный объемом 1, будет выполнять функцию преграды, в результате внедрения в которую происходит диссипация кинетической энергии поражающих элементов за счет образованного гетерогенного слоя оксида алюминия с низкой степенью трещинообразования по площади и объему бронеэлемента. В свою очередь, нижний слой объема 2 будет выполнять функцию осколкоулавливателя и подпорного амортизирующего слоя за счет низкого предела деформации присущего неупрочненному алюминию. Аналогичные функции будут выполнять слои объемов 1 и 2 при сочетании, представленном на фиг. 5. Данное сочетание возможно при проектировании средств для работы в среде, где наиболее вероятным является воздействие потока поражающих элементов, но с возможным ударно-волновым воздействием продуктов взрыва.

Похожие патенты RU2680948C1

название год авторы номер документа
БРОНЕЗАЩИТНАЯ СТРУКТУРА НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ И СПОСОБ ЕЁ ПРОИЗВОДСТВА 2016
  • Соколов Илья Валерьевич
RU2621527C1
СПОСОБ ПРОИЗВОДСТВА БРОНЕЗАЩИТНОЙ СТРУКТУРЫ НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ С ЛОКАЛИЗОВАННЫМ ОБЪЕМОМ УПРОЧНЕНИЯ 2018
  • Воробьев Иван Семенович
RU2686501C1
Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах 2018
  • Орыщенко Алексей Сергеевич
  • Марков Михаил Александрович
  • Красиков Алексей Владимирович
  • Улин Игорь Всеволодович
  • Геращенков Дмитрий Анатольевич
  • Кузнецов Павел Алексеевич
  • Васильев Алексей Филиппович
  • Быкова Алина Дмитриевна
RU2678045C1
Способ получения функционально-градиентных покрытий на металлических изделиях 2021
  • Хорев Александр Васильевич
  • Фот Максим Геннадьевич
  • Геращенков Дмитрий Анатольевич
  • Марков Михаил Александрович
  • Пантелеев Игорь Борисович
  • Олонцев Егор Олегович
RU2763698C1
МНОГОСЛОЙНАЯ БРОНЕПРЕГРАДА 2009
  • Келина Ирина Юрьевна
  • Ленский Владимир Валерьевич
  • Чикина Антонина Андреевна
  • Голубева Наталья Александровна
  • Посыпкина Любовь Александровна
RU2393416C1
КОМПОЗИЦИОННОЕ ПОКРЫТИЕ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2000
  • Берестнев Олег Васильевич
  • Басинюк Владимир Леонидович
  • Кирейцев Максим Валерьевич
  • Макаревич Геннадий Викторович
  • Сасковец Валерий Васильевич
RU2175686C1
Теплопередающая стенка теплообменника и способ формирования покрытия для интенсификации теплообмена теплопередающей стенки теплообменника 2021
  • Никифоров Алексей Александрович
  • Павленко Александр Николаевич
  • Куприков Михаил Юрьевич
  • Печеркин Николай Иванович
  • Катаев Андрей Иванович
  • Володин Олег Александрович
  • Миронова Ирина Борисовна
RU2793671C2
КАТАЛИТИЧЕСКИ-АКТИВНОЕ ТЕРМОБАРЬЕРНОЕ КЕРАМИЧЕСКОЕ ПОКРЫТИЕ НА ПОВЕРХНОСТИ КАМЕРЫ ВНУТРЕННЕГО СГОРАНИЯ ДВИГАТЕЛЯ 2014
  • Лебедев Дмитрий Александрович
  • Иванов Максим Борисович
RU2581329C1
Способ формирования теплообменной поверхности с комбинированным пористым покрытием и теплообменная поверхность, полученная таким способом 2018
  • Елагина Оксана Юрьевна
  • Леньков Виктор Алексеевич
  • Слободяников Борис Анатольевич
  • Шикин Александр Владимирович
RU2806750C2
СПОСОБ ПОЛУЧЕНИЯ ДЕКОРАТИВНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ СПЛАВОВ ВЕНТИЛЬНЫХ МЕТАЛЛОВ 2023
  • Чуфистов Олег Евгеньевич
  • Малышев Владимир Николаевич
  • Золкин Алексей Николаевич
  • Чуфистов Евгений Алексеевич
RU2816187C1

Иллюстрации к изобретению RU 2 680 948 C1

Реферат патента 2019 года БРОНЕЗАЩИТНАЯ СТРУКТУРА НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ С ЛОКАЛИЗОВАННЫМ ОБЪЕМОМ УПРОЧНЕНИЯ

Изобретение относится к области броневых материалов для защиты от поражающих факторов взрывных боеприпасов. Бронезащитная структура на основе пористого алюминия с локализованным объемом упрочнения состоит из пористого открытоячеистого алюминия, содержащего 60-70% открытых взаимосообщающихся пор с диаметром в диапазоне от 0,14 мм до 0,5 мм, на поверхность которых микродуговым оксидированием нанесен слой оксида алюминия. Объем пор (1) с нанесенным слоем оксида алюминия локализован в общем объеме бронезащитной структуры и образует с неоксидированным объемом (2) пор явно выраженный контур. Контур объема пор (1) с нанесенным слоем оксида алюминия определен любой, существующей в трехмерном пространстве, геометрической фигурой. Локализованный объем пор (1) с нанесенным слоем оксида алюминия может быть как больше, так и меньше объема пор без нанесенного слоя оксида алюминия. Количество чередований локализованного объема пор (1) с нанесенным слоем оксида алюминия и объема пор (2) без нанесенного слоя оксида алюминия неограниченно в рамках общей геометрии структуры. Технический результат: сочетание в пористой гомогенной структуре путем локализации объема упрочнения механических свойств, обеспечивающих эффект рассеивания, и диссипация ударно-волнового воздействия продуктов взрыва, диссипация энергии потока поражающих элементов со снижением уровня трещинообразования и диссипация остаточной энергии без применения дополнительных подпорных структур. 4 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 680 948 C1

1. Бронезащитная структура на основе пористого алюминия с локализованным объемом упрочнения, состоящая из пористого открытоячеистого алюминия, содержащего 60-70% открытых взаимосообщающихся пор с диаметром в диапазоне от 0,14 мм до 0,5 мм, на поверхность которых микродуговым оксидированием нанесен слой оксида алюминия, отличающаяся тем, что объем пор с нанесенным слоем оксида алюминия локализован в общем объеме бронезащитной структуры и образует с неоксидированным объемом пор явно выраженный контур.

2. Бронезащитная структура по п. 1, отличающаяся тем, что контур объема пор с нанесенным слоем оксида алюминия определен любой, существующей в трехмерном пространстве, геометрической фигурой.

3. Бронезащитная структура по п. 1, отличающаяся тем, что локализованный объем пор с нанесенным слоем оксида алюминия может быть как больше, так и меньше объема пор без нанесенного слоя оксида алюминия.

4. Бронезащитная структура по п. 1, отличающаяся тем, что отношение толщины слоя, образованного локализованным объемом пор с нанесенным слоем оксида алюминия к общей толщине структуры, не менее 1/9 и не более 8/10 линейного размера общей толщины структуры.

5. Бронезащитная структура по п. 1, отличающаяся тем, что количество чередований локализованного объема пор с нанесенным слоем оксида алюминия и объема пор без нанесенного слоя оксида алюминия неограниченно в рамках общей геометрии структуры.

Документы, цитированные в отчете о поиске Патент 2019 года RU2680948C1

БРОНЕЗАЩИТНАЯ СТРУКТУРА НА ОСНОВЕ ПОРИСТОГО АЛЮМИНИЯ И СПОСОБ ЕЁ ПРОИЗВОДСТВА 2016
  • Соколов Илья Валерьевич
RU2621527C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА (ВАРИАНТЫ) 2005
  • Меркулов Юрий Юрьевич
RU2294517C2
УЬХНПЧЕСКЛЯ БИБ-'ИОТГиА 0
SU167891A1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ КАРБИДА БОРА 2009
  • Анин Хестер Рас
  • Франсис Ван-Стаден
  • Роналд А. Абрамш
  • Кавешини Наидо
RU2515663C2
Бетонная смесь 2022
  • Перфилов Владимир Александрович
  • Ляшенко Дмитрий Александрович
  • Козловцева Елена Юрьевна
RU2781876C1

RU 2 680 948 C1

Авторы

Воробьев Иван Семенович

Даты

2019-02-28Публикация

2018-04-04Подача