Изобретение относится к авиации, преимущественно к винтомоторной, предназначенной для грузо-пассажирских перевозок при отсутствии развитой аэродромной инфраструктуры.
Известен винтомоторный самолет (патент RU №2613074) использующий для вертикального взлета воздушные винты с катушечно-канатным приводом (далее ВКК), с применением твердотопливной ракеты и которые после взлета самолета отбрасываются (вариант - в море). Также, известен способ вертикальной посадки винтомоторного самолета (патент RU №2609663) с использованием гирлянды парашютов и двух длинноходовых пневмоцилиндров. Но вертикально взлетающий самолет для посадки использует обычный аэродром, а совершающий вертикальную посадку, требует такой же аэродром для взлета.
Целью изобретения является обеспечение возможности взлета и посадки грузо-пассажирских самолетов (преимущественно винтомоторных) без использования обычных аэродромов (т.е. с твердыми взлетно-посадочными полосами большой протяженности).
Поставленная цель обеспечивается использованием для подъема в воздух самолетов, способных совершать вертикальную посадку, подъемной аэродинамической платформы.
Подъемная аэродинамическая платформа, содержащая фюзеляж, с навешенными по разные стороны от ее продольной оси несколькими винтомоторными установками, с катушечно-канатным приводом, с фиксированными углами атаки лопастей и вертикальными осями вращения (ВКК), а также твердотопливную ракету, присоединенную к свободным концам канатов, по изобретению, платформа содержит несколько аналогичных заднерасположенных винтомоторных установок с катушечно-канатным приводом, но с горизонтальными осями вращения, а также содержит четыре, диагонально расположенные, электроприводные винтомоторные установки с изменяемым шагом лопастей и вертикальным расположением осей вращения (далее ЭВМУ). Также, платформа на земле опирается на четыре вертикально расположенных телескопических пневмоцилиндра, оснащенных колесными тележками. При этом, ЭВМУ питаются энергией от электрогенераторов установленных на борту, а ВКК содержат электроприводной механизм намотки каната на катушки.
На фиг. 1 изображена подъемная аэродинамическая платформа (далее ПАП) на земле, с подвешенным снизу самолетом, вид сбоку. На фиг. 2, ПАП изображена в плане.
ПАП содержит фюзеляж рамного типа 1 с навешенными на него по бокам четырьмя (вариант) подъемными ВКК 2 и четырьмя ЭВМУ 3. Сзади на фюзеляж 1 навешены два (вариант) тяговые ВКК 4. На земле фюзеляж 1 опирается на четыре телескопических пневмоцилиндра 5. ВКК 2 и ВКК 4 включают в себя в/винты 6 с фиксированным шагом лопастей (вариант - многолопастные, вентиляторного типа), катушки 7 с намотанными на них канатами 8 (синтетическими или стекловолоконными). Свободные концы всех канатов 8 присоединяются к твердотопливной ракете 9 посредством отводных шкивов 10. Снизу к фюзеляжу 1 подвешивается (много вариантов крепления - не показаны) предназначенный к подъему в воздух самолет 11. ЭВМУ 3 содержат в/винты 12 с регулируемым шагом лопастей и электропривод 13. Пневмоцилиндры 5 опираются на колесные тележки 14.
ПАП действует следующим образом. После приземления (методом вертикальной посадки) и произведения высадки/посадки пассажиров (вариант), к самолету 11 подлетает ПАП, используя ЭВМУ 3 и вертикально «садится» на него с упором на пневмоцилиндры 5 с колесными тележками 14 (т.е. не касаясь самолета 11). Далее производится стыковка ПАП и самолета 11 (вариант - с помощью центральных замков сверху фюзеляжа самолета 11) и запускается ракета 9 в направлении предстоящего взлета, с некоторым набором высоты, увлекающая за собой канаты 8. Катушки 7, раскручиваемые сматываемыми с них канатами 8, приводят в движение в/винты 6 всех ВКК (2 и 4) и происходит взлет. При этом, основную подъемную силу создают ВКК 2, а ЭВМУ 3 преимущественно обеспечивают продольно-поперечное балансирование ПАП в полете. Разгонную (горизонтально направленную) силу создают ВКК 4 и ракета 9. После набора безопасной высоты (50÷100 м) и необходимой скорости (150÷250 км/ч) самолет 11 отстыковывается от ПАП и продолжает полет самостоятельно. К этому моменту канаты 8 уже полностью сходят с катушек 7 и вместе с отработавшей ракетой 9 падают на заранее подготовленную площадку (для повторного использования или утилизации). Облегченный ПАП (освободился от самолета 11, канатов 8 и ракеты 9) на ЭВМУ 3 возвращается на стартовую позицию для подъема в воздух следующего самолета. Повторная намотка канатов 8 на катушки 7 с помощью электроприводного механизма обратного вращения (не показан) может производиться уже во время стоянки ПАП над самолетом 11. При этом, могут использоваться как новые канаты, так и уже отработавшие, после их ревизии. А ракеты 9 целесообразно использовать одноразовые. Перезагрузка самолета 11, заправка его топливом, а также высадка/посадка пассажиров могут быть совмещены с операциями по установке новых канатов 8 и ракеты 9 на ПАП. К месту применения ПАП прилетает самостоятельно, на ЭВМУ 3, в предельно облегченном варианте (канаты 8, ракеты 9 и основная масса топлива - доставляются самолетами 11).
Совместное использование ПАП и самолетов, приспособленных для вертикальной посадки, в частности, может помочь в освоении Сибири и районов крайнего севера и стать альтернативой крайне неэффективной (для транспортных операций) вертолетной авиации.
название | год | авторы | номер документа |
---|---|---|---|
Винтомоторный самолёт вертикального взлёта | 2015 |
|
RU2613074C2 |
НИЗКОСКОРОСТНОЙ САМОЛЁТ БОЛЬШОЙ ГРУЗОПОДЪЁМНОСТИ | 2015 |
|
RU2595065C1 |
МУЛЬТИПЛАН | 2021 |
|
RU2766483C2 |
КОНВЕРТОПЛАН - 2 | 2017 |
|
RU2661255C1 |
Винтомоторный самолёт | 2015 |
|
RU2609663C1 |
СТРАТОСФЕРНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ | 2022 |
|
RU2799175C2 |
КОНВЕРТОПЛАН-1 | 2017 |
|
RU2666503C1 |
ПОДЪЁМНО-ТРАНСПОРТНАЯ ПРИСТАВКА К ВЕРТОЛЁТУ | 2017 |
|
RU2657699C1 |
Система для осуществления вертикального взлета реактивного самолета | 2015 |
|
RU2610244C1 |
ВНЕДОРОЖНОЕ ТРАНСПОРТНОЕ СРЕДСТВО - РОБОТ | 2017 |
|
RU2653977C1 |
Изобретение относится к области авиации, в частности к конструкциям авиационных платформ. Подъемная платформа содержит фюзеляж с размещенными на нем по разные стороны от продольной оси четырьмя балансировочными электроприводными винтомоторными установками с изменяемым углом атаки лопастей. Платформа содержит несколько подъемных винтомоторных установок с фиксированным углом атаки лопастей, катушечно-канатным приводом и с вертикальными и горизонтальными осями вращения винтов. Для привода подъемных винтов используется твердотопливная ракета, присоединенная к свободным концам канатов. Обеспечивается возможность взлета и посадки самолетов без использования аэродромов. 3 з.п. ф-лы, 2 ил.
1. Подъемная аэродинамическая платформа, содержащая фюзеляж с навешенными, по разные стороны от ее продольной оси, несколькими винтомоторными установками с катушечно-канатным приводом, с фиксированными углами атаки лопастей и вертикальными осями вращения, а также твердотопливную ракету, присоединенную к свободным концам канатов, отличающаяся тем, что содержит несколько аналогичных заднерасположенных винтомоторных установок с катушечно-канатным приводом, но с горизонтальными осями вращения, а также содержит четыре диагонально расположенные электроприводные винтомоторные установки с изменяемым шагом лопастей и вертикальным расположением осей вращения.
2. Платформа по п. 1, отличающаяся тем, что на земле она опирается на четыре вертикально расположенных телескопических пневмоцилиндра, оснащенных колесными тележками.
3. Платформа по п. 1, отличающаяся тем, что электроприводные воздушные винты питаются энергией от электрогенераторов, установленных на ее борту.
4. Платформа по п. 1, отличающаяся тем, что воздушные винты с катушечно-канатным приводом содержат электроприводной механизм намотки каната на катушки.
АВИАПЛАТФОРМА С ВЕРТИКАЛЬНЫМ ВЗЛЕТОМ И ПОСАДКОЙ | 1994 |
|
RU2090452C1 |
Винтомоторный самолёт вертикального взлёта | 2015 |
|
RU2613074C2 |
US 4678141 A1, 07.07.1987 | |||
TW 201711917 A, 01.04.2017 | |||
US 20170225784 A1, 10.08.2017. |
Авторы
Даты
2019-04-29—Публикация
2018-07-05—Подача