Способ приготовления концентрата серпентинового триботехнического состава для смазочных материалов Российский патент 2019 года по МПК C10M177/00 C10M161/00 C10N30/06 

Описание патента на изобретение RU2687232C1

Изобретение относится к триботехническим составам на основе масляных суспензий порошков высокодисперсных минералов группы серпентина и может быть использовано в качестве добавок к смазочным материалам, например, к моторным, трансмиссионным маслам, к пластичным смазкам для повышения износостойкости узлов трения при их работе в различных штатных смазочных материалах.

Известны многие триботехничсскис составы на основе разнообразных материалов и способы приготовления их масляных суспензий, предназначенных для введения в масла, смазки узлов и агрегатов для уменьшения их трения и изнашивания. Так из 160 патентов РФ по применению трибосоставов выявлено: серпентиновых - 53, металлоплакирующих - 36, фторсодержащих - 9, наноалмазных - 7, многокомпонентных - 6, с графитом - 3, с дисульфидом молибдена - 2, средств и приемов щелочной, магнитной, электрической и другой обработки масел - 10, специфика приемов комплексной обработки деталей - 13, масел с трибодобавками - 9.

Разработки разнообразных трибосоставов шли и за рубежом, результатом которых к настоящему времени являются более десятка эффективных серийных трибосоставов стран Европы и США, Десятки патентов США, Великобритании, Франции, Европейские патенты защищают специфические составы масел, а также трибосоставы на основе химических реагентов, наноалмазов, металлоплакирующих и полимерных веществ. А всего в историческом плане их рекламировалось около 100 наименований.

Основное содержание трибосоставов в РФ: минеральное, металлосодержащее, органическое и трибохимическое, но наиболее востребованы - серпентиновые, как смеси гидросиликатов магния, никеля, алюминия, железа, хотя имеются и углеродные кластеры КАРАТ-М (ООО «Реал-Дзержинск») и Красноярские углеродные наноразмерные волокна «GRAF-SB» по ТУ 0257-004-10182605-2016.

Недостатком известных трибосоставов является сложность приготовления, завышенная цена, седиментационная неустойчивость, нестабильность фракционного и фазового состава, а отсюда и нестабильность триботехнических свойств.

Известны многие масляные суспензии триботехнических составов на основе высокодисперсных порошков минералов группы серпентина.

Недостатками известных триботехнических составов и масляных суспензий на основе высокодисперсных минералов группы серпентина, а также способов их приготовления являются трудоемкость добычи серпентинита, его дробления, многократного измельчения, сложность оборудования и технологии извлечения необходимых серпентиновых минералов, отсутствие или незначительное содержание в трибосоставах самой ценной триботехнической составляющей - порошков минерала Лизардит-1Т. Другим недостатком известных триботехнических составов и способов приготовления их масляных суспензий является отсутствие контроля фракционного, фазового состава минералов, показателей трибологии приготовленного материала, а отсюда - нестабильность его триботехнических свойств.

Наиболее близким к заявленному техническому решению (прототип) является «Способ получения антифрикционных противоизносных присадок к смазочным материалам» по патенту РФ №2017802 (МПК С10М 177/00, C10N 30:06. 2000 г.), заключающийся в измельчении, просеивании и смешивании порошка со смазочным материалом. Предварительно каждый из порошков раздельно измельчают в мельницах эжекционного типа в среде перегретого пара при скорости 200-300 м/с, давлении 8-12 атм. и температуре 170-230°С с последующим воздействием электромагнитного поля с частотой 490-510 Гц в течение 8-12 с, раздельно смешивают с диспергирующим агентом в соотношении 1:2, полученные продукты раздельно обрабатывают в вибрационных мельницах при частоте 40-60 Гц и температуре 58-62°С в течение 2 ч, объединяют и смешивают со смазочным маслом в гидроволновом смесителе при частоте 80-120 Гц и температуре 58-60°С и полученную смесь подвергают тонкому фильтрованию.

Недостатком известного способа является его чрезвычайная сложность, трудоемкость, необходимость применения уникального оборудования, отсутствие контроля фракционного, фазового состава в порошках, неопределенность их содержания, отсутствие в составе самого ценного триботехнического компонента - порошка минерала Лизардит-1Т, отсутствие конечного контроля триботехнических свойств разработанного триботехнического материала.

Технической задачей изобретения является упрощение технологии, уменьшение трудоемкости, применяемого оборудования для приготовления порошкового минерального триботехнического состава и его масляной суспензии, обеспечение должного фракционного, фазового состава минералов, включение минерала Лизардит-1Т, обеспечение должных стабильных триботехнических свойств состава для повышения износостойкости узлов трения при эксплуатации их в штатных смазочных материалах.

Поставленная техническая задача достигается тем, что в способе приготовления концентрата серпентинового для смазочных материалов, заключающимся в измельчении и просеивании порошка, согласно изобретению, порошок из отходов флотации хромовой руды Сарановского месторождения просеивают на сите 1 мм, подвергают термообработке без разрушения структуры минералов группы серпентина в течение часа при температуре 100-105°С, просеивают на сите 100 мкм, измельчают на шаровой планетарной мельнице, просеивают на сите 40 мкм, определяют фракционный и фазовый составы, триботехнические свойства и после контроля выдают порошок концентратом триботехнического серпентинового состава для ввода в моторные, трансмиссионные масла и пластичные смазки.

Изобретение поясняется чертежом, на котором представлены результаты сравнительных триботехнических испытаний. Коэффициенты трения стальной три-бопары «палец-диск» в моторном масле фирмы «Мобил» класса качества SJ/SL по API и класса вязкости 05W-30 по SAE (1), в масле М-10Г (ГОСТ 8581-78) ЗАО «Роснефть» (2) и с введенными в последнее по 1% трибосоставами: профилактический КАМП (ООО «Автостанкопром») (3), серпентиновые ЦНТ (ООО «ЦНТ») (4), МС-20 (ФГБНУ ГОСНИТИ и ООО «РИЛ») (5), «Сарановский» (ФГБНУ ГОСНИТИ и ФГБНУ ВИЭСХ) (6), наноалмазный КАРАТ-5 (ООО «Реал-Дзержинск и Красноярский ИХХТ ФИЦ КНЦ СО РАН) (7).

Масла и трибопрепараты испытаны на трибометре TRB-S-DE.

Для приготовления триботехнического состава использованы отходы флотации на ОАО «Сарановская шахта «Рудная» (618850, Россия, Пермская область, Горнозаводский р-н, п. Сараны, ул. Ленина, тел. 25342-69; E-mail: saranir@yandex.ru).

Сарановское месторождение - одно из самых уникальных минералогических объектов Урала. Здесь крупнейшее месторождение хромитов: хромовый диаспор, хромовый амезит, хромовый корундофиллит, хромовый шериданит и другие уникальные минералы. Поэтому ОАО «Сарановская шахта «Рудная» является крупнейшим предприятием по добыче и обогащению хромитов в РФ. На шахте подземным способом добывают хромовую руду, измельчают, проводят флотацию измельченной руды и выделяют хромовый концентрат. За 100 лет добыто более 10 млн.т. хромитовой руды, Его потребитель - Серовский завод ферросплавов Свердловской обл., а отходы флотации, как промышленный источник силикатов, отправляют в «хвостохранилище», где их имеется более 50 млн.т.

В предлагаемом способе и использованы эти отходы. В исходной руде, кроме хромитов, содержится серпентин, развитый по пироксену и редко по оливину. А отходы флотации состоят, в основном, из минерала лизардитового бастита по ортопироксену и аппооливинового Лизардита по формуле Mg3[Si2O5](OH)4 с незначительным содержанием хромшпинелида. Отходы флотации содержат также небольшое количество хлоритов, кальцит и уваровит. Плотность порошка отходов 2550 кг/м3, твердость по минералогической шкале - 2,5…3.

Пример реализации способа.

Для приготовления серпентинового триботехнического материала порошок отходов флотации хромовой руды Сарановского месторождения просеивали на сите 1 мм, подвергали термообработке при 105°С в течение часа в электрошкафу ТЕРМИКС без разрушения кристаллической структуры минералов группы серпентина, просеивали на сите 100 мкм виброгрохота «Analizette», измельчали на шаровой планетарной мельнице «Активатор 2SL» по стандартной методике, просеивали на сите 40 мкм того же виброгрохота, определяли фракционный состав на инвертированном металлографическом микроскопе OLIMPUS GX-51, фазовый состав на рентгеновском дифрактометре XRD 6000 Японской фирмы Shimadzu, а триботехниче-ские свойства - на трибометре TRB-S-DE Швейцарской фирмы CSM Instruments.

Согласно данным оптической микроскопии в Наноцентре ФГБНУ ГОСНИТИ большая доля измельченных частиц имела размеры 1-5 мкм с редкими агломератами до 56 мкм, средний, автоматически определенный, размер составил 2,3 мкм. А так как по имеющейся 30-летней практике специалистов по производству серпентиновых трибосоставов и данным ТУ на их порошки оптимальный размером частиц 1-40 мкм, то полученный порошок по фракционному составу приемлем.

По сообщениям, высказанным на «Круглом Столе» в ГК РОСНАНО 15.01.2009 г, соединения хрома для серпентиновых трибосоставов вредны. Поэтому порошок до и после измельчения был исследован в Наноцентре ФГБНУ ГОСНИТИ на дифрактометре XRD 6000 на фазовый состав и на наличие остатков соединений хрома.

По полученным данным рентгенофазового анализа с использованием международной библиотеки спектров ICDD порошок до активации на шаровой мельнице, а особенно после активации, представлял частицы нескольких минералов триботехнической группы серпентина. Цвет порошка светло-желтый с серым оттенком, который после измельчения, как трибоматериал, стал несколько светлее.

Примечание: По литературным данным в основную триботехническую группу минералов группы серпентина входят Антигорит, Хризотил и Лизардит структурной формулы IT.

Проведенная дифрактометрия полученных порошков, с идентификацией их минералов с минералами из всех томов международной библиотеки спектров ICDD, явных соединений хрома в исследованном порошке не выявила. Минералами в разработанном триботехническом материале по ICDD выявлены:

- [(Mg,Al)3(Si,Fe)2O5](OH)4 - Aluminum IronMagnesium Si Lisardite-IT - основной триботехнический минерал из группы серпентина;

- [Mg3Si2O5](OH)4 - Magnesium Silicate Hydroxide (Clinochrysotil) - также один из основных минералов группы серпентина;

- [Ni3Si2O5](OH)4 - Nickel Silicate Hydroxide Pecoratite-2Mcl - вторичный минерал группы серпентина;

- [Ni5Al4O11]18H2O - Nickel Aluminum Oxide Hydroxide - примесь из минералов группы серпентина.

Испытания разработанного триботехнического материала проведены в Наноцентре ФГБНУ ГОСНИТИ на трибометре TRB-S-DE Швейцарской фирмы CSM Instruments по стандартной методике со стальной трибопарой палец-диск в режиме ступенчатого ее нагружения до давления 200 МПа при постоянной скорости скольжения 100 см/с. Их результаты показаны на фиг. 1.

Испытания показали:

- высокую нагрузочную и антифрикционную эффективность моторного масла фирмы «Мобил», по-видимому, одного из лучших мировых,

- совпадение антифрикционных свойств триботехнического состава «ЦНТ» (от ООО «ЦНТ») с триботехническим составом МС-2 (ООО «РеалИнПроект», ГОСНИТИ и ВНИИТиН), приготовленных из аналогичного сырья,

- хорошие антифрикционные свойства наноалмазных триботехнических составов КАРАТ-5 (ООО «РеалДзержинск») и КАРАТ-М (Красноярский институт химии и химической технологии СО РАН),

- а главное: триботехнический состав «Сарановский» оказался лучшим из сер-пентиновых и приближает триботехнические свойства моторного масла М-102K среднего уровня качества (СС по API) к высшему мировому уровню триботехнических свойств моторного масла фирмы Мобил, класса SJ/SL.

После фракционного, фазового и триботехнического контроля приготавливали концентраты триботехнического состава «Сарановский». Смешивали 50 г смазочного масла с 15 г созданного триботехнического порошка, а 50 г пластичной смазки - с 50 г этого же порошка. Концентраты из жидкой смазки предназначены для «безразборного ремонта» ДВС и силовых передач, содержащих по 5 л картерного масла, а концентрат из пластичной смазки рассчитан на 5 кг пластичных смазок.

Использование способа позволит значительно упростить технологию, уменьшить трудоемкость.

Похожие патенты RU2687232C1

название год авторы номер документа
Способ повышения работоспособности новых и изношенных узлов и агрегатов машин и оборудования 2018
  • Любимов Дмитрий Николаевич
  • Дунаев Анатолий Васильевич
  • Вершинин Николай Константинович
  • Пустовой Игорь Филиппович
  • Лобачевский Яков Петрович
  • Дорохов Алексей Семенович
  • Саяпин Александр Сергеевич
RU2679331C1
Комплексный способ повышения эффективности смазывания в агрегатах автотракторной техники 2018
  • Пустовой Игорь Филиппович
  • Дунаев Анатолий Васильевич
  • Любимов Дмитрий Николаевич
RU2679575C1
ТРИБОТЕХНИЧЕСКИЙ СОСТАВ ПРОТИВОИЗНОСНЫЙ АНТИФРИКЦИОННЫЙ ВОССТАНАВЛИВАЮЩИЙ 2015
  • Зеленьков Сергей Михайлович
  • Киселев Кирилл Александрович
  • Раевский Алексей Юрьевич
  • Лавров Юрий Георгиевич
RU2599161C1
СПОСОБ ПОЛУЧЕНИЯ И СОСТАВ СМАЗОЧНОЙ КОМПОЗИЦИИ ДЛЯ ФОРМИРОВАНИЯ ПРОТИВОИЗНОСНЫХ И АНТИФРИКЦИОННЫХ СВОЙСТВ ПРИПОВЕРХНОСТНЫХ СЛОЕВ ТРУЩИХСЯ ДЕТАЛЕЙ 2007
  • Поляков Сергей Андреевич
  • Хазов Сергей Петрович
RU2351640C2
СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКОГО АНТИФРИКЦИОННОГО ПОКРЫТИЯ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ УЗЛОВ ТРЕНИЯ 2006
  • Калуженов Владимир Михайлович
  • Воронков Владимир Данилович
  • Воробьева Людмила Александровна
  • Яковлев Андрей Алексеевич
RU2293892C1
СОСТАВ ДЛЯ БЕЗРАЗБОРНОГО УЛУЧШЕНИЯ ТРИБОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК УЗЛОВ ТРЕНИЯ "ГЕОМОДИФИКАТОР ТРЕНИЯ" 1999
  • Аратский П.Б.
  • Лавров Ю.Г.
RU2169172C1
СОСТАВ ДЛЯ УЛУЧШЕНИЯ АНТИФРИКЦИОННЫХ И ПРОТИВОИЗНОСНЫХ СВОЙСТВ УЗЛОВ ТРЕНИЯ 2011
  • Лавров Юрий Георгиевич
  • Орлов Игорь Васильевич
  • Аль-Сакаф Хасан Мухамед
RU2469074C1
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПРОТИВОИЗНОСНОГО СОСТАВА (НДПС) И СОДЕРЖАЩАЯ ЕГО СМАЗОЧНАЯ КОМПОЗИЦИЯ 2008
  • Поляков Сергей Андреевич
  • Хазов Сергей Петрович
RU2399650C1
СОСТАВ ДЛЯ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ УЗЛОВ ТРЕНИЯ 2002
  • Шевченко Ю.Б.
  • Дураджи Ю.В.
RU2246531C2
ТВЕРДОСМАЗОЧНАЯ КОМПОЗИЦИЯ 2010
  • Бай Николай Михайлович
  • Ерофеев Валерий Владимирович
  • Любимов Дмитрий Николаевич
  • Долгополов Кирилл Николаевич
  • Иванов Алексей Евгеньевич
RU2434056C1

Иллюстрации к изобретению RU 2 687 232 C1

Реферат патента 2019 года Способ приготовления концентрата серпентинового триботехнического состава для смазочных материалов

Изобретение относится к способу приготовления концентрата триботехнического состава на основе масляных суспензий порошков высокодисперсных минералов группы серпентина, который может быть использован в качестве добавки к смазочным материалам. Согласно изобретению порошок из отходов флотации хромовой руды Сарановского месторождения просеивают на сите 1 мм, подвергают термообработке без разрушения структуры минералов группы серпентина в течение часа при температуре 100-105°С, просеивают на сите 100 мкм, измельчают на шаровой планетарной мельнице, просеивают на сите 40 мкм, определяют фракционный, фазовый составы, триботехнические свойства и, в дальнейшем, смешивают 50 г моторного или трансмиссионного масла с 15 г порошка, а 50 г пластичной смазки с 50 г порошка. Использование данного способа позволит значительно упростить технологию и уменьшить трудоемкость. 1 ил.

Формула изобретения RU 2 687 232 C1

Способ приготовления концентрата серпентинового триботехнического состава для смазочных материалов, заключающийся в измельчении и просеивании порошка, отличающийся тем, что порошок из отходов флотации хромовой руды Сарановского месторождения просеивают на сите 1 мм, подвергают термообработке без разрушения структуры минералов группы серпентина в течение часа при температуре 100-105°С, просеивают на сите 100 мкм, измельчают на шаровой планетарной мельнице, просеивают на сите 40 мкм, определяют фракционный и фазовый составы, триботехнические свойства и после контроля выдают порошок концентратом триботехнического серпентинового состава для ввода в моторные, трансмиссионные масла и пластичные смазки.

Документы, цитированные в отчете о поиске Патент 2019 года RU2687232C1

СПОСОБ ПОЛУЧЕНИЯ АНТИФРИКЦИОННЫХ ПРОТИВОИЗНОСНЫХ ПРИСАДОК К СМАЗОЧНЫМ МАТЕРИАЛАМ 1992
  • Громаковский Д.Г.
  • Макаров Н.Г.
  • Кириленко Л.Н.
  • Скачек А.Б.
  • Малышев В.П.
  • Колосов И.Е.
RU2017802C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИЕВОГО УДОБРЕНИЯ 1999
  • Макаров В.Н.
  • Калинников В.Т.
  • Корытная О.П.
  • Васильева Т.Н.
  • Никонов В.В.
  • Лукина Н.В.
RU2151132C1
УСТРОЙСТВО для ПОДАЧИ ФУТЕРОвочных плит в 0
SU244099A1
НАНОТЕХНОЛОГИЧЕСКАЯ АНТИФРИКЦИОННАЯ ПОРОШКОВАЯ КОМПОЗИЦИЯ (ВАРИАНТЫ), НАНОТЕХНОЛОГИЧЕСКАЯ СМАЗОЧНАЯ КОМПОЗИЦИЯ И СПОСОБ НАНОТЕХНОЛОГИЧЕСКОЙ СМАЗКИ 2009
  • Давыдов Николай Александрович
  • Зуев Валерий Владимирович
  • Рейбанд Юрий Яковлевич
RU2415176C2

RU 2 687 232 C1

Авторы

Фильков Михаил Николаевич

Дунаев Анатолий Васильевич

Лобачевский Яков Петрович

Даты

2019-05-08Публикация

2018-05-30Подача