Изобретение относится к области биоизмерительных технологий, а именно к способам оценки с помощью тестовых микроорганизмов токсичности проб, содержащих различные нефтепродукты и другие подобные им углеводороды.
Известен «Способ определения чувствительности микроорганизмов к антимикробным веществам» (патент RU № 2505813, МПК G01N 33/48, дата приоритета 06.11.2012, опубликовано 27.01.2014), в котором антимикробную активность тестируемых веществ по отношению к тому или иному биоматериалу предлагается определять, исходя из количества колоний микроорганизмов, исходно содержащихся в означенном биоматериале и выросших на плотной накопительной питательной среде в присутствии тестируемого препарата, а также времени проявления видимого роста этих колоний. Недостатками этого способа являются его длительность (до 3-х суток), большая трудоемкость, большая материалоемкость по компонентам питательных сред, а также то, что антимикробная активность тестируемых веществ определяется визуально, а следовательно, достаточно субъективно.
Известен «Способ определения токсичности среды по степени угнетения роста тест-культур микроорганизмов», (патент RU № 2570637, МПК C12Q, дата приоритета 14.10.2014, опубликовано 10.12.2015), в котором токсичность тестируемых веществ определяется с помощью геометрической линейки по формуле: ΔR=100-100×(DK-DT)/DК, где DT и DК - средний диаметр колоний тестовых культур (в качестве которых используются различные виды и штаммы микромицетов), выросших на плотной питательной среде в присутствии различных концентраций тестируемого вещества, а также в отсутствие оного, по прошествии одинакового времени инкубации при одинаковой температуре. Недостатками этого способа, как и в предыдущем случае, являются его длительность (до 14-и суток), большая трудоемкость, большая материалоемкость по компонентам питательных сред, а также значительная субъективность получаемых результатов.
Известен «Способ оценки эффективности антимикробного воздействия антисептиков на бактерии, существующие в форме биопленки» (патент RU № 2603100, МПК C12Q, дата приоритета 29.10.2015, опубликовано 20.11.2016), в котором эффективность действия антисептиков на бактерии, выделенные из клинического материала пациента и существующие в жидкой питательной среде (ЖПС) в форме биопленки, предлагается определять как отношение рабочей концентрации антисептика к его минимальной подавляющей концентрации. При этом регистрацию эффективности действия той или иной концентрации тестируемого антисептика на биопленку предлагается проводить с помощью фотометра - по изменению цвета и помутнению ЖПС с тестовыми микроорганизмами, инкубируемой при заданной температуре в течение заданного времени (от 5-и суток и более) в присутствии тестируемого антисептика, взятого в упомянутой концентрации. Основными недостатками этого способа, как и в предыдущих случаях, являются его большая длительность и трудоемкость, а также невысокая объективность, поскольку рассматриваемый способ позволяет оценивать влияние тестируемых веществ лишь на скорость роста тестовых микроорганизмов, но не на интенсивность их метаболизма.
Наиболее близким к предлагаемому техническому решению является «Способ определения бактерицидных свойств сыворотки крови» (патент RU № 2489489, МПК C12Q 1/18, дата приоритета 26.12.2011, опубликовано 10.08.2013), в котором бактерицидные свойства проб сыворотки крови определяют по уменьшению интенсивности люминесценции инкубируемого в LB-бульоне в присутствии тестируемых проб тестового трансгенного штамма Bacillus subtilis ВКПМ В-10548, эффективно экспрессирующего luxAB-гены грамотрицательного морского микроорганизма Photobacterium leiognathi (в результате чего синтезируется фермент люцифераза, обеспечивающий активное свечение, интенсивность которого зависит от общего количества жизнеспособных тестовых микроорганизмов и активности их метаболизма). При этом анализ осуществляют следующим образом:
на первом (подготовительном) этапе выращивают штамм Bacillus subtilis ВКПМ В-10548 на LB-агаре в присутствии канамицина в конечной концентрации 40 мкг/мл (что позволяет исключить рост не люминесцирующих штаммов) при 37°С в течение 24 часов. Полученную биомассу смывают стерильным LB-бульоном, после чего полученную суспензию стандартизуют до оптической плотности 1,2 отн. ед. при 540 нм (измеряемой в кюветах с длиной оптического пути 1 см);
на втором (основном) этапе смешивают суспензию бактериальных клеток и исследуемого образца сыворотки крови в соотношении 1:1 и инкубируют полученную смесь при 37°С в течение 30 минут. При этом до и после инкубации из тестовой смеси производят отбор аликвот по 250 мкл в кюветы для биолюминометра. И дополнительно вносят в них по 2 мкл деканаля в конечной концентрации 7×10-6 М (окисляемого в присутствии молекулярного кислорода ферментом люциферазой - что и обеспечивает активное свечение тестового штамма).
На завершающем этапе осуществляют регистрацию уровня свечения в пробах в видимой сине-зеленой области спектра (420-600 им). При этом в качестве измерительного прибора могут использоваться биохемилюминометр «Биоток-10М», а также прочие отечественные и зарубежные люминометры, работающие в обозначенной области спектра и обеспечивающие соответствующую чувствительность измерений.
К основным недостаткам данного технического решения можно отнести узкую область его применения (анализ бактерицидных свойств только лишь сыворотки крови человека и животных); а также то, что рассматриваемый метод обладает не очень высокой объективностью, поскольку влияние тестируемых проб (в качестве которых в данном случае выступают образцы сыворотки крови животных и человека) на тестовые организмы определяется всего лишь по одному косвенному параметру (а именно, разности интенсивностей хемилюминесценции тестовых микроорганизмов в присутствии и в отсутствие тестируемых проб).
В связи со всё ускоряющимся развитием технологий, увеличением объемов и разнообразия производимой и потребляемой человечеством продукции, а также увеличением народонаселения и концентрацией его в отдельных районах, увеличивается всё более и антропогенная нагрузка на окружающую среду, а также усложняется её характер и территориальное распределение. Вследствие этого, всё более актуальной становится проблема разработки достаточно простых, дешевых, экспрессных, достоверных, надежных и доступных для массового применения методов оценки степени экологического неблагополучия различных водоемов и территорий и т.п. Кроме того упомянутые методы важны и для мониторинга токсической и экологической безопасности различной продукции, а также выбросов и стоков на разных этапах их очистки и утилизации и т.п.
Нефтепродукты (включая природную нефть) являются на сегодняшний день одними из наиболее значимых загрязнителей окружающей среды. Наиболее приемлемым и адекватным из методов оценки их токсичности в настоящее время признано использование тестовых биосистем. Использование в качестве последних многоклеточных организмов позволяет более адекватно моделировать человеческий организм. В то же время, биотестирование с помощью микроорганизмов делает проведение таких анализов значительно более простым, доступным, дешевым, экспрессным и объективным в оценке результатов.
В связи с вышесказанным, целью заявляемого изобретения стало создание способа, позволяющего, по сравнению с прототипом, с большей объективностью оценивать токсичность более широкого круга тестируемых проб (включая пробы, содержащие значительные количества различных нефтепродуктов и других подобных им углеводородов).
Цель эта достигается за счёт того, что в предлагаемом способе (который включает такие операции как подготовка тестовых образцов, инкубирование этих образцов как в присутствии тестируемых проб, так и в их отсутствие, сопровождающееся измерением свойств этих образцов в начале и в конце их инкубации, и последующее определение токсичности тестируемых проб на основании упомянутых измерений) тестовые образцы перед началом их инкубирования представляют собой суспензии Pseudomonas yamanorum VKM B-3033D в количестве от 5×105 до 5×106 жизнеспособных клеток на мл водного раствора, изначально содержащего 4-10 г/л сахарозы + 1,5-1,7 г/л NH4NO3 + 0,4-0,6 г/л KH2PO4 + 0,4-0,6 г/л NaH2PO4 + 0,6-0,8 г/л (NH4)2SO4 + 0,18-0,22 г/л Mg(NO3)2 + 0,05-0,07 г/л FeCl3 + 0,018-0,022 г/л CaCl2 и имеющего рН 6,6-7,4; инкубирование этих образцов в присутствии тестируемых объектов (в качестве которых могут выступать пробы, содержащие различные нефтепродукты и другие подобные им углеводороды) проводят в течение 10-20 часов при 15-25°С; свойства тестовых образцов определяют при этом путем измерения для них интенсивности света, упруго рассеиваемого на длине волны 540±10 нм (Iod), интенсивности светопоглощения на длине волны 300±10 нм (Auv) и интенсивности фотофлуоресценции на длине волны 465±10 нм при возбуждении оной на длине волны 380±10 нм (Iff); после чего общую степень активирования или ингибирования (+/-) жизнедеятельности тестовых микроорганизмов тестируемыми объектами определяют по формуле: εs=(εIod+0,4εAuv+0,6εIff)/2, где εIod, εAuv и εIff определяют по формулам εY=100×(ΔYt-ΔYc )/ΔYc, где ΔY=Ye-Yb - разности значений Iod, Auv или Iff, регистрируемых в начале (Yb) и в конце (Ye) инкубации тестовых образцов в присутствии тестируемых объектов (AYt) и в их отсутствие (AYc).
При этом, для длительного хранения Р. yamanorum (на скошенном агаре, при 1-6°С, с пересевом через каждые 2 месяца ) рекомендуется питательная среда следующего состава: 20 г/л белкового гидролизата + 3 г/л NaNO3 + 1 г/л KH2PO4 + 0,5 г/л KCl + 0,5 г/л MgSO4 + 20 г/л агар-агара.
Выбор Pseudomonas в качестве тестовых микроорганизмов связан с тем, что эти аэробные, не образующие спор, палочковидные бактерии, обладая развитой ферментной системой (позволяющей им использовать в процессе своего метаболизма в качестве источника углерода самые различные органические субстраты), активной подвижностью (обеспечиваемой двумя жгутиками, полярно расположенными на концах вытянутой клетки Pseudomonas) и малыми размерами, широко распространены в естественных условиях в почве, различных водоемах, воздухе и т.п. А кроме того, штамм Pseudomonas yamanorum VKM В-3033D, предлагаемый к использованию в качестве тестового в описываемом изобретении, способен активно деструктурировать различные нефтепродукты и другие подобные им углеводороды, используя их в качестве источника углерода в процессах своего метаболизма (см. патент RU № 2615458 от 04.04.2017). При том, что в местах достаточно активного и длительного нефтезагрязнения практически всегда происходит изменение состава природных биоценозов, приводящее к преобладанию в них тех видов и штаммов живых организмов (среди которых микроорганизмы, как правило, представляют наиболее существенную часть - модельную, к тому же, в отношении большинства других живых организмов), которые способны наиболее эффективно использовать загрязняющие вещества для своего метаболизма. В результате, всё это обеспечивает наиболее объективную оценку хронического влияния тестируемых проб, содержащих нефтепродукты и другие подобные им углеводороды, на природную микрофлору и биоценозы, в целом.
Выбор количества жизнеспособных тестовых микроорганизмов, которое должно присутствовать в тестовых образцах перед началом их инкубации в присутствии и в отсутствие тестируемых объектов (от 5×105 до 5×106 кл/мл), определяется тем, что при меньшем количестве таковых микроорганизмов увеличивается длительность инкубации, необходимая для достижения максимальной чувствительности заявляемого способа анализа; а при большем количестве тестовых микроорганизмов снижается интенсивность их роста и метаболизма, что приводит к уменьшению чувствительности анализа.
Выбор исходного состава жидкой питательной среды, входящей в состав тестовых образцов (водный раствор с рН 6,6-7,4, содержащий 4-10 г/л сахарозы + 1,6±0,2 г/л NH4NO3 + 0,5±0,1 г/л KH2PO4 + 0,5±0,1 г/л NaH2PO4 + 0,7±0,1 г/л (NH4)2SO4 + 0,2±0,02 г/л Mg(NO3)2 + 0,06±0,01 г/л FeCl3 + 0,02±0,002 г/л CaCl2) связан с необходимостью обеспечения оптимальных условий как для развития в этой среде микроорганизмов, используемых в качестве тестовых, так и для измерения параметров этой среды, используемых в заявляемом способе в качестве аналитических (а именно, Iod, Auv и Iff) - что, как и в предыдущем случае, нужно для увеличения чувствительности и снижения продолжительности анализа.
Выбор режима инкубирования тестовых образцов (10-20 часов при 15-25°С) связан с тем, что при более длительном инкубировании интенсивность роста и метаболизма тестовых микроорганизмов снижается (что приводит к уменьшению чувствительности анализа); при других температурах инкубирования интенсивность роста и метаболизма тестовых микроорганизмов также снижается (что приводит к уменьшению чувствительности анализа либо увеличению его длительности); а при меньшем времени инкубирования тестовые микроорганизмы не успевают в достаточной степени среагировать на изменения в окружающей их среде, вызванные присутствием там тестируемых объектов (что приводит к снижению как чувствительности, так и объективности анализа).
А увеличение (по сравнению с прототипом) объективности и спектра применимости заявляемого способа анализа обеспечивается тем, что в ходе него осуществляется точная, инструментальная, количественная оценка изменения как интенсивности роста (оцениваемой нефелометрическим методом по изменению у тестовых образцов значений Iod), так и метаболической активности (оцениваемой по изменению у тестовых образцов значений Auv и Iff) тестовых микроорганизмов, являющихся типичными представителями естественной микрофлоры территорий, подвергающихся активному хроническому загрязнению различными нефтепродуктами и другими подобными им углеводородами. В то время как в прототипе влияние тестируемых объектов на тестовые микрорганизмы определялось всего лишь по одному параметру тестовых образцов (а именно, интенсивности их хемилюминесценции), достаточно косвенно характеризующему метаболическую активность тестовых микроорганизмов. Причем данным способом предлагалось оценивать токсичность весьма узкого круга тестируемых объектов (а именно, сыворотки крови человека и животных), и к тому же, с помощью тестовых микроорганизмов с достаточно нетипичным метаболизмом.
Реализация предлагаемого способа определения токсичности проб, содержащих различные нефтепродукты и другие подобные им углеводороды, осуществляется следующим образом:
Этап 1. Готовится питательная среда (ПС), представляющая собой стерильный водный раствор с рН 6,6-7,4, содержащий 4-10 г/л сахарозы + 1,5-1,7 г/л NH4NO3 + 0,4-0,6 г/л KH2PO4 + 0,4-0,6 г/л NaH2PO4 + 0,6-0,8 г/л (NH4)2SO4 + 0,18-0,22 г/л Mg(NO3)2 + 0,05-0,07 г/л FeCl3 + 0,018-0,022 г/л CaCl2. После чего все емкости с ПС хранятся в герметично закрытом виде, в отсутствие света, при 2-4°С.
Этап 2. Отбираются тестируемые пробы (ТП); после чего доставляются в лабораторию и хранятся там до начала анализа в темном месте, в герметически закрытом виде, при 2-4°С.
Этап 3. Подготавливается исходный тестовый образец (ТО). Для чего в одну большую емкость с ПС стерильно вносится 1-10 об. % закваски, содержащей суспендированные в ПС жизнеспособные клетки Pseudomonas yamanorum VKM B-3033D. После чего упомянутая емкость закрывается и инкубируется при 15-25 °С в течение 48 ч с обеспечением достаточного уровня циркуляции воздуха и питательных веществ (с помощью шейкера и ватно-марлевых пробок либо иными способами).
Затем в упомянутой емкости измеряется интенсивность света, упруго рассеиваемого ТО на длине волны 540±10 нм (Iod). И по предварительно построенному калибровочному графику (представляющему собой зависимость Iod ТО от концентрации содержащихся в нем клеток Р. yamanorum) удостоверяется, что полученное значение Iod соответствует концентрации Р. yamanorum в ТО от 5×105 до 5×106 клеток на мл (кл/мл).
После этого, если измеренная Iod соответствует концентрации Р. yamanorum в ТО меньше 5×105 кл/мл; то емкость с ТО инкубируется в тех же условиях, что и ранее в течение ещё 24 ч; после чего для неё проводится повторное определение Iod. А если измеренная Iod соответствует концентрации Р. yamanorum в ТО больше 5×106 кл/мл; то ТО в той же емкости разбавляется необходимым количеством ПС.
Этап 4. Если нас интересует концентрационная зависимость токсического действия тестируемых проб, либо эти пробы имеют слишком высокую исходную токсичность (так что ожидается, что в неразведенном виде они будут слишком сильно ингибировать развитие тестовых микроорганизмов), то делается необходимое количество разведений исходных проб. После чего каждая проба или каждое ее разведение делится на 3-5 равных частей, каждая из которых помещается в отдельную емкость, куда также добавляется заданное количество ТО, подготовленного на 3 этапе анализа.
Этап 5. Все емкости, приготовленные на 4-м этапе анализа, плюс некоторое количество контрольных емкостей, содержащих ТО без добавок тестируемых проб (а также, в случае необходимости, ТО с заданным количеством вещества или смеси веществ, про- или антимикробная активность которых известны заранее) закрываются, перемешиваются и помещаются в термостат, где инкубируются в течение 10-20 часов при температуре 15-25°С. При этом непосредственно перед началом и после окончания этой инкубации во всех упомянутых емкостях регистрируются значения таких параметров ТО (изменяющихся вследствие роста и размножения там тестовых микроорганизмов, а также преобразования ими в ходе метаболической активности одних веществ, входящих в состав ТО, в другие) как интенсивность света, упруго рассеиваемого на длине волны 540±10 нм (Iod), оптическая плотность на длине волны 300±10 нм (Auv) и интенсивность фотофлуоресценции на длине волны 465±10 нм при возбуждения оной на длине волны 380±10 нм (Iff).
Этап 6. После этого общая степень активирования или ингибирования (+/-) жизнедеятельности тестовых микроорганизмов тестируемыми пробами рассчитывается по формуле εs=(εIod+0,4εAuv+0,6εIff)/2,
где εIod, εAuv и εIff определяют по формулам εY=100×(ΔYt-ΔYc)/ΔYc, где ΔY=Ye-Yb - разности значений Iod, Auv или Iff, регистрируемых в начале (Yb) и в конце (Ye) инкубации ТО в присутствии тестируемых проб (ΔYt) и в их отсутствие (ΔYc).
Упомянутый способ может быть реализован с применением фотофлуориметра «СМ-2203» или иного, позволяющего с достаточной степенью чувствительности измерять для жидких, водных образцов интенсивность света, упруго рассеиваемого на длине волны 540±10 нм, оптическую плотность на длине волны 300±10 нм и интенсивность фотофлуоресценции на длине волны 465±10 нм при возбуждения оной на длине волны 380±10 нм.
Более детально настоящее изобретение описывается следующим конкретным примером.
Для анализа было взято три образца, содержащих неразведенные дизельное топливо (ДТ, представляющее собой одну из наиболее тяжелых фракций, получаемых при прямой дистилляции нефти и имеющих в своем составе от 15 до 30% ароматических углеводородов при 20-60% циклических и 10-40% ациклических насыщенных углеводородов), уайт-спирит (УС, представляющий собой легкий сорт керосина, получаемый прямой дистилляцией нефти и содержащий смесь различных жидких алифатических и ароматических углеводородов, причем последних не более 16% по массе) и ОП-10 (ОП, смесь ароматических углеводородов, достаточно активно применяемая в настоящее время в качестве смачивающей и эмульгирующей неионогенной поверхностно-активной добавки в нефтедобывающей, нефтеперерабатывающей, химической, текстильной, горно-рудной, сельскохозяйственной и других отраслях промышленности, а также в качестве активного вещества при производстве различных технических и бытовых моющих средств).
Каждый из этих образцов помещался в 6 пробирок (так, чтобы в 3-х из них конечная концентрация тестируемого образца составила 2×10-3 об. %, а в других 3-х - 2×10-5 об. %), в которые затем дополнительно было налито по 6 мл тестовой среды (ТС), в качестве которой использовалась суспензия, содержащая около 106 жизнеспособных клеток Pseudomonas yamanorum VKM B-3033D в 1 мл водного раствора, исходно стерильного, имевшего рН 7,0±0,2 и содержавшего 6±0,1 г/л сахарозы + 1,6±0,1 г/л NH4NO3 + 0,5±0,1 г/л KH2PO4 + 0,5±0,1 г/л NaH2PO4 + 0,7+0,05 г/л (NH4)2SO4 + 0,2+0,02 г/л Mg(NO3)2 + 0,06±0,003 г/л FeCl3 + 0,02+0,001 г/л CaCl2.
Затем все эти пробирки (включая 3-й контрольные, содержавшие ту же ТС, но без добавления какой-либо из тестируемых проб) перемешивались, закрывались ватно-марлевыми пробками и инкубировались на шейкере при комнатной температуре в течение 8-и часов. При этом непосредственно перед началом инкубации и сразу после ее окончания последовательно у ТС в каждой из пробирок с помощью спектрофлуориметра «СМ-2203» регистрировались интенсивность света, упруго рассеиваемого на длине волны 540±10 нм (Iod), оптическая плотность на длине волны 300±10 нм (Auv) и интенсивность фотофлуоресценции на длине волны 465±10 нм при возбуждения оной на длине волны 380±10 нм (Iff).
Далее, изменения каждого из измеренных параметров ТС рассчитывались по формуле: ΔY=Ye-Yb (где Yb и Ye - значения Iod, Auv или Iff, зарегистрированные в каждой из контрольных и тестовых пробирок в начале и в конце их инкубирования). Затем все полученные значения AY,- усреднялись (по пробиркам, содержащим одни и те же концентрации одних и тех же образцов), и для каждого из усредненных значений рассчитывался 95% доверительный интервал. После чего общая степень активирования или ингибирования (+/-) жизнедеятельности тестовых микроорганизмов тестируемыми пробами рассчитывалась по формуле
εs=(εIod+0,4εAuv+0,6εIff)/2,
где εY=100×(ΔYt-ΔYc)/ΔYc,
a ΔYt и ΔYc - изменения значений Iod, Auv или Iff, произошедшие за время инкубирования ТС в присутствии различных количеств тестируемых проб (ΔYt) и в их отсутствие (ΔYc).
Результаты этих расчетов представлены в таблице 1.
Таблица 1. Степень активирования или ингибирования (+/-) жизнедеятельности Pseudomonas yamanorum VKM B-3033D в присутствии различных количеств тестируемых проб (ТП).
Примечания. Здесь индексами «р3» и «р5» обозначены концентрации тестируемых материалов, равные 2×10-3 и 2×10-5 об. % соответственно. ДТ - дизельное топливо, УС - уайт-спирит, ОП - ОП-10.
Из представленных данных можно сделать следующие выводы. В присутствии любой из тестируемых проб в концентрации 2×10-3 об. % наблюдалась ингибирование жизнедеятельности тестовых микроорганизмов. При этом увеличение токсичности тестируемых проб наблюдалось в следующем ряду УС<ДТ<ОП. И ингибирование наблюдалось в большей степени для активности метаболизма Р. yamanorum (выражаемой значениями Auv и Iff) нежели для интенсивности роста и размножения таковых микроорганизмов (выражаемой значениями Iod).
В то же время, в концентрации 2×10-5 об. % все тестируемые пробы активировали жизнедеятельность тестовых микроорганизмов. При этом уменьшение пробиотических свойств тестируемых проб наблюдалось в следующем ряду ОП>УС>ДТ. И активирование наблюдалось в большей степени для интенсивности метаболизма Р. yamanorum нежели для скорости ее роста и размножения.
Таким образом, заявляемый способ может обеспечить повышение объективности и расширение области применения определения токсичности проб (включая пробы, содержащие значительные количества различных нефтепродуктов и других подобных им углеводородов).
название | год | авторы | номер документа |
---|---|---|---|
Способ определения токсичности материалов | 2019 |
|
RU2708164C1 |
Способ определения антибиотических свойств материалов | 2018 |
|
RU2688119C1 |
Способ определения бактерицидных свойств материалов | 2018 |
|
RU2689359C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ БАКТЕРИЦИДНЫХ СВОЙСТВ ВЕЩЕСТВ | 2018 |
|
RU2688328C1 |
Способ оценки про- и антимикробных свойств проб | 2018 |
|
RU2688117C1 |
Способ определения концентрации дидецилдиметиламмония хлорида и полигексаметиленбигуанидин гидрохлорида в фекальных стоках транспортных средств | 2020 |
|
RU2751795C1 |
Штамм бактерий Pseudomonas yamanorum ВКМ В-3033D для активизации биодеструкции нефти и нефтепродуктов в воде, а также в масляных грунтах на участках железной дороги | 2016 |
|
RU2615458C1 |
Биопрепарат для очистки загрязненного грунта железнодорожного полотна | 2020 |
|
RU2749108C1 |
Нефтеокисляющий биопрепарат, биосорбент на его основе и способ его приготовления | 2018 |
|
RU2703500C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ УСТОЙЧИВОСТИ МАТЕРИАЛОВ К БИОДЕГРАДАЦИИ | 2017 |
|
RU2676094C1 |
Изобретение относится к биотехнологии и микробиологии. Предложен способ определения токсичности проб, содержащих нефтепродукты. Способ включает инкубирование тестовых микроорганизмов Pseudomonas yamanorum VKM B-3033D в количестве от 5×105 до 5×106 жизнеспособных клеток на мл в жидкой питательной среде в течение 10-20 ч при 15-25°С в присутствии тестируемых проб и в их отсутствие. Измеряют интенсивность света (Iod), оптическую плотность (Auv) и интенсивность фотофлуоресценции (Iff). Общую степень активирования или ингибирования (+/-) жизнедеятельности тестовых микроорганизмов тестируемыми пробами определяют по формуле: εs=(εIod+0,4εAuv+0,6εIff)/2, где εIod, εAuv, εIff определяют по формулам εY=100×(ΔYt-ΔYc)/ΔYc, где ΔY=Ye-Yb - разности значений Iod, Auv или Iff, регистрируемых в начале (Yb) и в конце (Ye) инкубации тестовых образцов в присутствии тестируемых проб (ΔYt) и в их отсутствие (ΔYc). Способ обеспечивает объективность оценки токсичности проб, содержащих нефтепродукты. 1 табл.
Способ определения токсичности проб, включающий подготовку тестовых образцов, содержащих достаточное количество жизнедеятельных тестовых микроорганизмов, суспендированных в изначально стерильной жидкой питательной среде, инкубирование этих образцов как в присутствии тестируемых проб, так и в их отсутствие, сопровождающееся измерением свойств тестовых образцов в начале и в конце их инкубирования, и последующее определение токсичности тестируемых проб, отличающийся тем, что тестируемые пробы содержат нефтепродукты или другие подобные им углеводороды, тестовые микроорганизмы представляют собой штамм Pseudomonas yamanorum VKM В-3033D, количество которого в тестовых образцах перед началом инкубации последних должно составлять от 5×105 до 5×106 жизнеспособных клеток на мл, жидкая питательная среда, используемая для приготовления тестовых образцов, представляет собой стерильный водный раствор с pH 6,6-7,4, содержащий 4-10 г/л сахарозы + 1,5-1,7 г/л NH4NO3 + 0,4-0,6 г/л KH2PO4 + 0,4-0,6 г/л NaH2PO4 + 0,6-0,8 г/л (NH4)2SO4 + 0,18-0,22 г/л Mg(NO3)2 + 0,05-0,07 г/л FeCl3 + 0,018-0,022 г/л CaCl2, инкубирование тестовых образцов проводят в течение 10-20 ч при 15-25°C, свойства образцов определяют путем измерения интенсивности света, упруго рассеиваемого на длине волны 540±10 нм (Iod), оптической плотности на длине волны 300±10 нм (Auv) и интенсивности фотофлуоресценции на длине волны 465±10 нм при возбуждении оной на длине волны 380±10 нм (Iff), после чего общую степень активирования или ингибирования (+/-) жизнедеятельности тестовых микроорганизмов тестируемыми пробами определяют по формуле: εS = (εIod + 0,4εAuv + 0,6εIff) / 2, где εIod, εAuv и εIff определяют по формулам εY = 100 × (ΔYt - ΔYc) / ΔYc, где ΔY = Ye - Yb - разности значений Iod, Auv или Iff, регистрируемых в начале (Yb) и в конце (Ye) инкубации тестовых образцов в присутствии тестируемых проб (ΔYt) и в их отсутствие (ΔYc).
СПОСОБ ОПРЕДЕЛЕНИЯ ОПАСНОСТИ МИКРОБИОЛОГИЧЕСКОЙ ЗАГРЯЗНЕННОСТИ ВОДЫ | 2015 |
|
RU2576030C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОБИОЛОГИЧЕСКОЙ ЗАГРЯЗНЕННОСТИ ВОДЫ | 1996 |
|
RU2079138C1 |
Штамм бактерий Pseudomonas yamanorum ВКМ В-3033D для активизации биодеструкции нефти и нефтепродуктов в воде, а также в масляных грунтах на участках железной дороги | 2016 |
|
RU2615458C1 |
ШТАММ БАКТЕРИЙ Vibrio fischeri, ИСПОЛЬЗУЕМЫЙ В КАЧЕСТВЕ ТЕСТ-КУЛЬТУРЫ ДЛЯ ОПРЕДЕЛЕНИЯ ТОКСИЧНОСТИ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ | 2007 |
|
RU2346035C1 |
Авторы
Даты
2019-05-22—Публикация
2018-06-25—Подача