Способ дооперационного расчета и модификации интраокулярной линзы лазерной абляцией Российский патент 2019 года по МПК A61F9/08 A61F2/16 A61F9/13 

Описание патента на изобретение RU2688998C1

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при факоэмульсификации катаракты при коррекции всех видов аномалий рефракции и явлений пресбиопии.

Изобретение относится к мультифокальным глазным линзам, а конкретнее к торическим (астигматическим) мультифокальным интраокулярным линзам (ТМИОЛ), которые могут обеспечить плавное изменение силы линзы от центра к ее периферии, скорректировать миопию, гиперметропию, а также астигматизм.

Промышленно изготавливаемые интраокулярные линзы ТМИОЛ обычно имплантируются в глаза пациентов во время операций по поводу катаракты для замещения естественного нативного хрусталика. В некоторых, производимых в промышленных масштабах, ИОЛ используются мультифокальная структура, в которой есть два или три фокуса для разных дистанций. Другими словами, такие ИОЛ обеспечивают пациенту определенную степень аккомодации (иногда именуемую «псевдоаккомодацией»), которая отсутствует при обычных однофокусных ИОЛ. Разделение суммарного светового пучка между длиннофокусной и короткофокусной силами преломления может регулироваться модификацией высот ступеней дифракционной структуры и путем использования центральной рефракционной зоны, которая направляет свет исключительно в один фокус. Увеличение доли светового пучка к одному фокусу в целом вызывает снижение ее доли к другому фокусу, что снижает контрастность изображения для этого фокуса.

Недостатками ТМИОЛ является невозможность подстройки размеров оптических зон линзы под размер зрачка конкретного пациента. Также нельзя поместить оптический центр линзы точно по зрительной оси глаза, так как почти у всех имеющихся промышленно производимых ТМИОЛ есть симметричные фиксационные элементы по бокам линзы, которые нужны для центрирования линзы по анатомической оси глаза.

Но анатомическая ось часто не совпадает со зрительной, что вызывает неточности в коррекции торического компонента рефракции.

Авторам не известны способы модификации интраокулярных линз с помощью эксимерного лазера.

Задачей способа является модификация промышленно производимых моделей монофокальных сферических ИОЛ в ТМИОЛ с помощью эксимерного лазера для дальнейшей эффективной оптической коррекции возникающих в глазу оптических нарушений, появляющихся у пациента, вследствие удаления нативного хрусталика в ходе операции факоэмульсификации катаракты.

Техническим результатом способа является расширение показаний для выполнения операции, получение высоких клинико-функциональных результатов, уменьшение частоты и величины неточностей в коррекции недостатков рефракции глаза таких как: миопия, гиперметропия и астигматизм, а также коррекция пресбиопии.

Технический результат достигается тем, что ИОЛ до операции модифицируют эксимерным лазером с длиной волны 193 нм, превращая ее в ТМИОЛ. Модификация происходит путем нанесения на первом этапе режущим инструментом насечки на верхней части передней поверхности линзы, на стороне, на которой будет происходить последующее воздействие эксимерного лазера. Это делается для правильного расположения линзы в глазу пациента в ходе последующей операции. На втором этапе производят испарение (абляцию) части передней поверхности линзы (на который была нанесена насечка) по заранее вычисленному профилю (фиг. 1). Для его расчета используются данные кератотопографии, аберрометрии, авторефрактометрии, кератометрии, очковой коррекции и оптической биометрии глаза конкретного пациента, а также паспортные данные линзы (диаметр линзы, вид материала, из которого она была изготовлена, А-константа).

Между совокупностью существенных признаков и достигаемым техническим результатом существует причинно-следственная связь.

Абляция линзы происходит с учетом диаметра зрачка в фотопических (дневных) и скотопических (ночных) условиях освещенности, центр зоны абляции располагают по центру зрительной оси, которая определяется по данным кератотопографии и аберрометрии, что позволяет добиться правильного распределения рабочей части оптической зоны линзы в глазу конкретного пациента. Эти данные учитываются при проведении абляции и позволяют повысить качество зрения.

Изобретения поясняется фиг. 1, на которой изображен общий вид линзы с нанесенной на ней насечкой и зоной эксимерлазерной абляции. Позицией 1 обозначена радиальная насечка, 2 - кольцевидная зона для зрения вблизи, 3 - центральная зона для зрения вдаль.

Способ осуществляется следующим образом.

У пациента определяют истинную рефракцию глаза по данным рефракто- и кератометрии. Затем рассчитывают сферическую ИОЛ из гидрофобного акрила или полиметилметакрилата (ПММА) по известным формулам для катарактальной хирургии, используя данные биометрии глаза. К оптической силе рассчитанной линзы прибавляют от 0,5 до 4 диоптрий, при этом при наличии одного цилиндрического компонента без сферы прибавляют 0,5-2 диоптрий, при наличии одного сферического компонента без цилиндра прибавляют 2 диоптрии, если есть одновременно и сферический, и цилиндрический компоненты, то прибавляют 2,5-4 диоптрии.

Режущим инструментом поверхностно наносят визуально просматриваемую, длиной 1-2 мм, радиальную насечку на верхней части линзы, на передней ее поверхности, на которой будет происходить дальнейшее воздействие эксимерного лазера (фиг. 1). По рассчитанному алгоритму на основе данных кератотопографии, аберрометрии, рефракто- и кератометрии производят абляцию линзы с центром, расположенным по зрительной оси глаза, эксимерным лазером с длиной волны 193 нм. На линзе формируют и круговую и кольцевую зоны, при этом для зрения вдаль воздействие производят в круговой зоне диаметром 3-4,5 мм (фиг. 2), а для зрения вблизи воздействие производят в кольцевой зоне с внутренним диаметром 3-4,5 мм и внешним диаметром 4,5-6,5 мм. Диаметр круговой зоны совпадает с внутренним диаметром кольцевой зоны (фиг. 3). В результате пациент получает одновременно зрение на двух дистанциях: вдаль, за счет круговой зоны и вблизи за счет кольцевой. Глубина воздействия зависит от заранее рассчитанной необходимой диоптрийности линзы для конкретного пациента.

После проведения абляции линза чистится механически от появившихся в результате абляции загрязнений, после чего она готова к имплантации в глаз пациента.

Таким образом, дооперационный расчет и модификация интраокулярной линзы лазерной абляцией, выполненная предложенным способом, позволяет добиться высоких клинико-функциональных результатов, уменьшить частоту и величину неточностей в коррекции недостатков рефракции глаза, скорректировать торический компонент рефракции, а также нивелировать явления пресбиопии.

Пример 1. Больной В. 62 года, находился на лечении с диагнозом: Возрастная катаракта OD. Острота зрения правого глаза = 0,1.

08.02.18 за 2 дня до операции больному произведены диагностические обследования: рефракто- и кератометрия, биометрия глаза, кератотопография, аберрометрия. По этим данным рассчитана линза из гидрофобного акрила. У больного не было выявлено астигматизма, поэтому к рассчитанной силе линзы прибавили 3 диоптрии. На линзе, в верхней ее части лезвием нанесли визуально просматриваемую радиальную насечку длиной 2 мм. Рассчитали параметры абляции и произвели ее эксимерным лазером длиной волны 193 нм с круговой зоной для зрения вдаль диаметром 3 мм и кольцевой зоной для зрения вблизи внутренним диаметром 3 мм и внешним диаметром 4,5 мм на стороне, на которой находится насечка. Больному проведена факоэмульсификация катаракты с имплантацией заранее рассчитанной и модифицированной интраокулярной заявляемым способом линзы. Послеоперационный период протекал без особенностей. Пациент выписан на 2 сутки после операции. Острота зрения правого глаза 0,9.

Пример 2. Больной Д. 67 лет, находился на лечении с диагнозом: Возрастная катаракта OD. Острота зрения правого глаза = 0,2.

02.03.18 за день до операции больному произведены диагностические обследования: рефракто- и кератометрия, биометрия глаза, кератотопография, аберрометрия. По этим данным рассчитана линза из гидрофобного акрила. У больного был выявлен обратный астигматизм в 1,5 диоптрии, к рассчитанной силе линзы прибавили 2,5 диоптрии. На линзе лезвием нанесли визуально просматриваемую радиальную насечку длиной 1 мм. Рассчитали параметры абляции и произвели ее эксимерным лазером длиной волны 193 нм с круговой зоной для зрения вдаль диаметром 4,5 мм и кольцевой зоной для зрения вблизи внутренним диаметром 4,5 мм и внешним диаметром 6,5 мм на стороне, на которой находится насечка. Больному проведена факоэмульсификация катаракты с имплантацией заранее рассчитанной и модифицированной интраокулярной заявляемым способом линзы. Послеоперационный период протекал без особенностей. Пациент выписан на 2 сутки после операции. Острота зрения правого глаза 1,0, астигматизма после операции выявлено не было.

Похожие патенты RU2688998C1

название год авторы номер документа
СПОСОБ ЛАЗЕРНОЙ КОРРЕКЦИИ АБЕРРАЦИЙ ПОСЛЕ ФАКОЭМУЛЬСИФИКАЦИИ 2007
  • Азнабаев Булат Маратович
  • Габбасов Амир Ринатович
  • Мухамадеев Тимур Рафаэльевич
RU2331400C1
Способ коррекции астигматизма у пациентов с катарактой и авитрией 2021
  • Шилова Татьяна Юрьевна
RU2755667C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИСХОДНОГО ЗНАЧЕНИЯ ЦЕНТРАЛЬНОЙ КРИВИЗНЫ РОГОВИЦЫ, ПОДВЕРГШЕЙСЯ РЕФРАКЦИОННОЙ ОПЕРАЦИИ 2006
  • Богуш Илья Васильевич
RU2322179C1
Способ определения дифференцированных показаний к лазерной коррекции иррегулярного астигматизма роговицы после постинфекционных помутнений 2016
  • Мушкова Ирина Альфредовна
  • Майчук Наталия Владимировна
  • Кишкин Юрий Иванович
  • Макаров Руслан Александрович
RU2631635C1
Способ определения метода коррекции роговичного астигматизма у пациентов после сквозной и глубокой передней послойной кератопластик с помутнением хрусталика 2022
  • Синицын Максим Владимирович
  • Поздеева Надежда Александровна
RU2798187C1
Способ определения дифференцированных показаний к эксимерлазерной коррекции посткератотомических рефракционных нарушений 2016
  • Мушкова Ирина Альфредовна
  • Кишкин Юрий Иванович
  • Майчук Наталия Владимировна
  • Игнатьев Артём Викторович
RU2620660C1
ЭЛАСТИЧНАЯ ИНТРАОКУЛЯРНАЯ ЛИНЗА 2011
  • Паштаев Николай Петрович
  • Пивоваров Николай Николаевич
  • Паштаев Алексей Николаевич
  • Суркова Екатерина Николаевна
  • Треушников Валерий Михайлович
  • Старостина Ольга Валерьевна
RU2485916C2
СПОСОБ ЛАЗЕРНОЙ КОРРЕКЦИИ МИОПИИ 2019
  • Погодина Елена Геннадьевна
  • Вартапетов Сергей Каренович
  • Мовшев Виктор Григорьевич
  • Чупров Александр Дмитриевич
RU2726995C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИЧЕСКОЙ СИЛЫ ИНТРАОКУЛЯРНОЙ ЛИНЗЫ ПОСЛЕ РАДИАЛЬНОЙ КЕРАТОТОМИИ 2017
  • Жежелева Любовь Владимировна
  • Гусев Юрий Александрович
  • Сафонова Лариса Петровна
RU2644694C1
Способ интрастромальной кератопластики при кератоконусе 2021
  • Поздеева Надежда Александровна
  • Синицын Максим Владимирович
  • Толмачева Татьяна Геннадьевна
  • Терентьева Анна Евгеньевна
  • Тихонов Никита Михайлович
RU2773801C1

Иллюстрации к изобретению RU 2 688 998 C1

Реферат патента 2019 года Способ дооперационного расчета и модификации интраокулярной линзы лазерной абляцией

Изобретение относится к медицине, а именно к способам дооперационного расчета и модификации интраокулярной линзы лазерной абляцией. При этом у пациента определяют истинную рефракцию глаза по данным рефракто- и кератометрии. Проводят кератотопографию, аберрометрию, рассчитывают сферическую интраокулярную линзу (ИОЛ) из гидрофобного акрила или полиметилметакрилата (ПММА) по известным формулам для катарактальной хирургии. К оптической силе рассчитанной линзы прибавляют от 0,5 до 4 диоптрий. Режущим инструментом поверхностно наносят визуально просматриваемую радиальную насечку на передней поверхности верхней части линзы. Производят абляцию передней поверхности линзы с центром, расположенным по зрительной оси глаза, эксимерным лазером с длиной волны 193 нм. Для зрения вдаль воздействие производят в круговой зоне диаметром 3-4,5 мм. Для зрения вблизи воздействие производят в кольцевой зоне с внутренним диаметром 3-4,5 мм и внешним диаметром 4,5-6,5 мм. Диаметр круговой зоны совпадает с внутренним диаметром кольцевой зоны. Достигается расширение показаний для выполнения операции, получение высоких клинико-функциональных результатов, уменьшение частоты и величины неточностей в коррекции недостатков рефракции глаза, таких как миопия, гиперметропия и астигматизм, коррекция пресбиопии. 1 ил.

Формула изобретения RU 2 688 998 C1

Способ дооперационного расчета и модификации интраокулярной линзы лазерной абляцией, заключающийся в том, что у пациента определяют истинную рефракцию глаза по данным рефракто- и кератометрии, проводят кератотопографию, аберрометрию, затем рассчитывают сферическую интраокулярную линзу (ИОЛ) из гидрофобного акрила или полиметилметакрилата (ПММА) по известным формулам для катарактальной хирургии, к оптической силе рассчитанной линзы прибавляют от 0,5 до 4 диоптрий; режущим инструментом поверхностно наносят визуально просматриваемую радиальную насечку на передней поверхности верхней части линзы, производят абляцию передней поверхности линзы с центром, расположенным по зрительной оси глаза, эксимерным лазером с длиной волны 193 нм, при этом для зрения вдаль воздействие производят в круговой зоне диаметром 3-4,5 мм, а для зрения вблизи воздействие производят в кольцевой зоне с внутренним диаметром 3-4,5 мм и внешним диаметром 4,5-6,5 мм, при этом диаметр круговой зоны совпадает с внутренним диаметром кольцевой зоны.

Документы, цитированные в отчете о поиске Патент 2019 года RU2688998C1

RU 2008145675 A, 27.06.2010
ДОГА А.В
и др
Клинический случай докоррекции рефракционных нарушений после имплантации интраокулярной линзы "премиум-класса" // Вестник ТГУ
Токарный резец 1924
  • Г. Клопшток
SU2016A1
EP 3152517 A2, 12.04.2017
СПОСОБ ЛАЗЕРНОЙ КОРРЕКЦИИ АБЕРРАЦИЙ ПОСЛЕ ФАКОЭМУЛЬСИФИКАЦИИ 2007
  • Азнабаев Булат Маратович
  • Габбасов Амир Ринатович
  • Мухамадеев Тимур Рафаэльевич
RU2331400C1
WO 2010036859 A1, 01.04.2010.

RU 2 688 998 C1

Авторы

Мушкова Ирина Альфредовна

Майчук Наталия Владимировна

Балдаева Эрдэмика Владимировна

Анисимова Наталья Сергеевна

Маковкин Евгений Михайлович

Казанцев Александр Дмитриевич

Казанцев Антон Дмитриевич

Даты

2019-05-23Публикация

2018-08-01Подача