Способ подогрева топливного газа в энергонезависимом газоперекачивающем агрегате Российский патент 2019 года по МПК F02C6/00 

Описание патента на изобретение RU2689508C1

Изобретение относится к области машиностроения и теплотехники и может найти применение при разработке или модернизации газоперекачивающих агрегатов (ГПА) с газотурбинными установками (ГТУ) на газораспределительных станциях.

Предварительный подогрев топливного газа перед подачей в топливную систему ГТУ ГПА обусловлен необходимостью компенсации эффекта Джоуля-Томсона, параметра, характеризующего охлаждение газов в результате процесса дросселирования. Падение температуры топливного газа может вызвать обмерзание элементов топливной системы и конденсацию жидких фракций (пропана, бутана и др.). Именно поэтому производители газовых турбин требуют обеспечение температуры природного газа на входе в топливную систему ГТУ примерно на 15-25 К выше температуры точки росы для применяемого состава газа.

Предварительный рекуперативный подогрев топлива с использованием сбросного тепла сокращает общий расход топлива - на, ~0,1% на каждые 20 К подогрева (т.е. на ≈1% при 200°С). Тем самым повышается кпд установки до, примерно 0,5% абсолютных (при ничтожно малом снижении мощности ГТУ).

Известна «Система нагрева топливного газа в газоперекачивающем агрегате», патент RU 150383, МПК F28C 3/06, дата публикации 20.02.2015 года, где подогревают топливный газ в газомасляных теплообменниках блока подготовки топливного газа с использованием тепла горячего масла, которое направляют от центробежного нагнетателя и от газотурбинного двигателя газоперекачивающего агрегата. В блоке редуцирования, подключенном между последовательно соединенными газомасляными теплообменниками, давление топливного газа редуцируют с входного значения до требуемых значений, а также автоматически поддерживают на заданных значениях. Такой подогрев топливного газа утилизирует тепло, повышает надежность и эффективность работы ГПА. Однако, при осуществлении такого технологического цикла сохраняется достаточно высокое потребление электроэнергии.

Одна из наиболее важных задач топливно-энергетического комплекса - проведение активной энергосберегающей политики, обеспечивающей достижение необходимого результата при минимальных затратах энергии. И задача кардинального повышения энергетических характеристик производства компримированного природного газа на газораспределительных станциях требует качественно новых технологических решений.

Пути повышения энергетической эффективности различны. Одной из наиболее перспективных возможностей - использование технологии органического цикла Ренкина (ОЦР), которая позволяет преобразовывать остаточное низкопотенциальное тепло технологических процессов в полезную мощность. Под аббревиатурой ОЦР (или OCR от англ. «Organic Rankine Cycle», органический цикл Ренкина) подразумевается термодинамический цикл, предложенный Ренкином. ОЦР основан на классической схеме паротурбинного цикла, в ходе которого происходит преобразования потенциальной энергии рабочего тела в механическую энергию вращения ротора и далее в электрическую энергию посредством электрогенератора. Вместо водяного пара в ОЦР используется пар органической жидкости, который характеризуется большим молекулярным весом, что позволяет работать турбине на низких оборотах, при низких значениях давления и избежать эрозии металлических частей и лопаток.

Известны технологии энергосбережения на базе ОЦР-технологии, предложенные компанией Turboden для утилизации тепла отходящих (выхлопных) газов газотурбинных двигателей компрессорных агрегатов, например, сайт компании Turboden RUS, разделы «Технологии энергосбережения», «Производство» (http://turbodenrus.com/tekhnologii, http://turbodenrus.com/proizvodstvo), для осуществления которых в укрытии контейнерного типа подключают оборудование (турбину, генератор, насосы, систему маслоснабжения, электрооборудование, систему управления) через внешний теплообменник к источнику выхлопных газов, при этом, во внешнем теплообменнике используют прямой теплообмен или промежуточный контур с термическим маслом. Входящий тепловой поток тепла выхлопных газов ГТУ трансформируется в электрическую энергию (до 25-26%) и тепло (до 80%), с крайне низкими тепловыми потерями - всего 2%.

Основным недостатком известных технологических решений является то, что при осуществлении технологического процесса сохраняется достаточно высокое потребление электроэнергии. Также, известные технологические решения направлены на усовершенствование выполнения лишь одного технологического процесса - либо утилизация тепла, либо подогрев топливного газа. Ни одно из известных технологических решений не направлено на совмещение этих процессов в один энергонезависимый технологический процесс подогрева топливного газа для газотурбинного двигателя газоперекачивающего агрегата на газораспределительной станции.

Целью изобретения является повышение экономической эффективности и энергоэффективности процессов производства компримированного природного газа на газораспределительной станции.

Техническим результатом изобретения является разработка способа подогрева топливного газа для ГТУ ГПА, одновременно сочетающем в себе высокую эффективность нагрева топливного газа и полное обеспечение собственных нужд ГПА по энергоснабжению.

Поставленная цель достигается в способе подогрева топливного газа, при котором одновременно обеспечивают дополнительный подогрев топливного газа и полное энергоснабжение газоперекачивающего агрегата. К выхлопной системе газотурбинного двигателя газоперекачивающего агрегата подключают установку, состоящую из органического цикла Ренкина (ОЦР) и использующую тепло выхлопных газов газотурбинного двигателя. Теплообменник-экономайзер установки ОЦР выполняют трехпоточным, в котором вход третьего потока соединяют с выходом блока с газомасляными теплообменниками для подготовки топливного газа, а выход третьего потока соединяют со входом топливной системы газотурбинного двигателя. Отбирают поток топливного газа из магистрального газопровода, фильтруют и направляют на нагрев в блок с газомасляными теплообменниками для подготовки топливного газа, где поочередно: нагревают поток топливного газа в первом газомасляном теплообменнике горячим маслом, отбираемым от нагнетателя газоперекачивающего агрегата, редуцируют в детандере, нагревают во втором газомасляном теплообменнике горячим маслом, отбираемым от газотурбинного двигателя газоперекачивающего агрегата, и нагревают в теплообменнике-экономайзере ОЦР горячим органическим теплоносителем. Завершая подогрев потока топливного газа, направляют его в топливную систему газотурбинного двигателя газоперекачивающего агрегата. Устанавливают электрическую связь с генератором детандера и с турбиной ОЦР и направляют электрическую энергию на энергоснабжение газоперекачивающего агрегата. Регулируют количество производимой электроэнергии посредством изменения площади теплообменных поверхностей теплообменника-испарителя ОЦР.

Такое осуществление подогрева топливного газа для газотурбинного двигателя газоперекачивающего агрегата позволяет одновременно обеспечить дополнительный подогрев топливного газа и полное энергоснабжение этого газоперекачивающего агрегата. Это обуславливает повышение экономической эффективности за счет осуществления одновременно двух технологических процессов и повышение энергоэффективности за счет обеспечения полной энергонезависимости ГПА.

Установка ОЦР в составе ГПА для преобразования тепла продуктов сгорания (выхлопных газов) вырабатывает 300÷400 кВт электроэнергии, одновременно с этим, детандер-генератор в блоке с газомасляными теплообменниками для подготовки топливного газа вырабатывает около 50 кВт электроэнергии. Такое количество электроэнергии полностью покрывает собственные нужды ГПА.

Настоящее изобретение и его преимущества будут более понятны путем ссылки на последующее подробное описание и прилагаемый чертеж.

На фиг. 1 показана упрощенная схема технологического процесса реализации способа подогрева топливного газа в соответствии с практическим применением этого изобретения.

Схема технологического процесса представляет собой предпочтительное конструктивное исполнение применения на практике процесса по этому изобретению. Чертеж не исключает из объема изобретения другие конструктивные исполнения, которые являются результатом обычных и предполагаемых модификаций этого конкретного конструктивного исполнения. Различные требуемые вспомогательные системы, такие как клапаны, смесители потоков, системы регулирования и датчики исключены из чертежа в целях упрощения и ясности представления.

При реализации способа к выхлопной системе 9 газотурбинного двигателя 11 турбоблока 13 ГПА подключают установку 16, состоящую из органического цикла Ренкина (ОЦР). Источником тепла в установке 16 выступает тепло выхлопных газов газотурбинного двигателя 11 ГПА. В насосе 5 ОЦР повышают давление рабочего тела (например, но не ограничиваясь этим, фреона 245fa) цикла в жидком состоянии от 7,5 бар до 29 бар. Затем, рабочее тело подогревают в теплообменнике-экономайзере 3 ОЦР и подают в теплообменник-испаритель 1 ОЦР, где отдают ему тепло от продуктов сгорания газотурбинного двигателя 11 ГПА и, соответственно, испаряют. После этого, рабочее тело в газообразном состоянии направляют в турбину 2 ОЦР, где понижают давление рабочего тела и вырабатывают электрическую энергию. Далее, рабочее тело доохлаждают в теплообменнике-экономайзере 3 ОЦР и подают в конденсатор 4. После конденсации рабочее тело в жидком состоянии направляют в насос 5 и цикл замыкается.

Поток топливного газа 10 отбирают из магистрального газопровода, фильтруют (фильтры на фигуре не показаны) и направляют на нагрев в блок с газомасляными теплообменниками 6 и 8 для подготовки топливного газа, где последовательно и поочередно нагревают поток топливного газа в первом газомасляном теплообменнике 8 потоком 15 горячего масла, отбираемым от нагнетателя 12 газоперекачивающего агрегата, редуцируют в детандере 7, нагревают во втором газомасляном теплообменнике 6 потоком 14 горячего масла, отбираемым от газотурбинного двигателя 11 газоперекачивающего агрегата, и нагревают в теплообменнике-экономайзере 3 ОЦР горячим органическим теплоносителем (например, но не ограничиваясь этим, фреоном 245fa). Завершая подогрев потока 10 топливного газа, направляют его в топливную систему газотурбинного двигателя 11 газоперекачивающего агрегата. Для организации подогрева топливного газа в теплообменнике-экономайзере 3 ОЦР, его выполняют трехпоточным. Вход его первого потока соединяют с выходом турбины 2 ОЦР, а выход со входом конденсатора 4, вход второго потока соединен с выходом насоса 5, а выход со входом теплообменника-испарителя 1 ОЦР, вход третьего потока соединяют с выходом блока с газомасляными теплообменниками 6 и 8 для подготовки топливного газа, а выход третьего потока соединяют со входом топливной системы газотурбинного двигателя 11.

Для обеспечения полной энергонезависимости газоперекачивающего агрегата устанавливают электрическую связь с генератором детандера 7 и с турбиной 2 ОЦР и направляют полученную электрическую энергию на энергоснабжение ГПА: к аппаратам воздушного охлаждения газа и вентиляторам, к контрольным приборам и датчикам, на обогрев и освещение помещения и т.п. Помимо этого, регулируют количество производимой электроэнергии в зависимости, например, от сезонных факторов, для чего изменяют площадь теплообменных поверхностей (на фигуре не показаны) теплообменника-испарителя 1 ОЦР посредством включения в технологический процесс или выключения из него одной или нескольких теплообменных секций этого теплообменника.

Таким образом, при осуществлении изобретения, повышение энергоэффективности достигается использованием энергии, вырабатываемой детандер-генератором блока с газомасляными теплообменниками для подготовки топливного газа и турбиной ОЦР, для обеспечения всех энергозависимых устройств. ГПА: двигателей компрессоров, насоса, вентиляторов аппаратов воздушного охлаждения, контрольных приборов и датчиков и т.п., без привлечения внешних источников энергии. Повышение экономической эффективности достигается за счет организации энергонезависимого технологического процесса, обеспечивающего одновременные дополнительный подогрев топливного газа, эффективную утилизацию тепла и полную энергонезависимость ГПА.

Похожие патенты RU2689508C1

название год авторы номер документа
Газотурбинный газоперекачивающий агрегат (варианты) 2018
  • Белоусов Юрий Васильевич
RU2689509C1
Система ожижения природного газа на компрессорной станции магистрального газопровода 2019
  • Белоусов Юрий Васильевич
RU2694566C1
Интегрированная система топливопитания и маслообеспечения газоперекачивающего агрегата компрессорной станции 2018
  • Белоусов Юрий Васильевич
RU2689506C1
СИСТЕМА НАГРЕВА ТОПЛИВНОГО ГАЗА С КОГЕНЕРАЦИОННОЙ УСТАНОВКОЙ 2013
  • Белоусов Юрий Васильевич
  • Пчелинцев Виктор Дмитриевич
  • Верещагин Николай Николаевич
  • Юренков Андрей Анатольевич
RU2561777C2
АГРЕГАТНЫЙ ГАЗОМАСЛЯНЫЙ БЛОК С ДЕТАНДЕР-ГЕНЕРАТОРОМ (ВАРИАНТЫ) 2016
  • Белоусов Юрий Васильевич
  • Верещагин Николай Николаевич
  • Середенок Виктор Аркадьевич
  • Воронин Валерий Николаевич
RU2665764C1
СИСТЕМА ПРОИЗВОДСТВА ЭКОЛОГИЧЕСКИ ЧИСТОГО ТОПЛИВА НА ТЭЦ С ПАРОГАЗОВОЙ УСТАНОВКОЙ 2021
  • Белоусов Юрий Васильевич
RU2774551C1
СИСТЕМА ПОДОГРЕВА ТОПЛИВНОГО И БУФЕРНОГО ГАЗА 2009
  • Белоусов Юрий Васильевич
  • Бурдюгов Сергей Иванович
RU2403521C1
СПОСОБ БЕЗОПАСНОГО ПОДОГРЕВА ТОПЛИВНОГО ГАЗА И ГАЗОМАСЛЯНЫЙ ТЕПЛООБМЕННИК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Шайхутдинов Александр Зайнетдинович
  • Белоусов Юрий Васильевич
  • Журавлева Ирина Николаевна
  • Щуровский Владимир Александрович
RU2312241C2
СПОСОБ ЗАПУСКА ГАЗОПЕРЕКАЧИВАЮЩЕГО АГРЕГАТА 2014
  • Белоусов Юрий Васильевич
  • Верещагин Николай Николаевич
  • Колпаков Дмитрий Александрович
RU2572905C1
Способ работы газотурбинной установки газоперекачивающего агрегата 1990
  • Ишутин Николай Алексеевич
  • Осередько Юрий Спиридонович
  • Юращик Игорь Леонтьевич
  • Литошенко Анатолий Константинович
  • Кармозин Юрий Иванович
  • Глушков Валерий Иванович
  • Сиренко Иван Федорович
SU1816896A1

Иллюстрации к изобретению RU 2 689 508 C1

Реферат патента 2019 года Способ подогрева топливного газа в энергонезависимом газоперекачивающем агрегате

Изобретение относится к области машиностроения и теплотехники и может найти применение при разработке или модернизации газоперекачивающих агрегатов с газотурбинными установками. При реализации данного способа подогрева топливного газа одновременно обеспечивают дополнительный подогрев топливного газа и полное энергоснабжение газоперекачивающего агрегата. Для этого к выхлопной системе газотурбинного двигателя газоперекачивающего агрегата подключают установку, состоящую из органического цикла Ренкина (ОЦР). Теплообменник-экономайзер установки ОЦР выполняют трехпоточным. Отбирают поток топливного газа из магистрального газопровода, фильтруют и направляют на нагрев в блок с газомасляными теплообменниками для подготовки топливного газа, где поочередно: нагревают поток топливного газа в первом газомасляном теплообменнике горячим маслом, отбираемым от нагнетателя газоперекачивающего агрегата, редуцируют в детандере, нагревают во втором газомасляном теплообменнике горячим маслом, отбираемым от газотурбинного двигателя газоперекачивающего агрегата, и нагревают в теплообменнике-экономайзере ОЦР горячим органическим теплоносителем. Завершая подогрев потока топливного газа, направляют его в топливную систему газотурбинного двигателя газоперекачивающего агрегата. Устанавливают электрическую связь с генератором детандера и с турбиной ОЦР и направляют электрическую энергию на энергоснабжение газоперекачивающего агрегата, при этом регулируют количество производимой электроэнергии, изменяя площадь теплообменных поверхностей теплообменника-испарителя ОЦР. Изобретение позволяет повысить энергоэффективность процессов производства компримированного природного газа. 1 ил.

Формула изобретения RU 2 689 508 C1

Способ подогрева топливного газа, при котором одновременно обеспечивают дополнительный подогрев топливного газа и полное энергоснабжение газоперекачивающего агрегата и для осуществления которого к выхлопной системе газотурбинного двигателя газоперекачивающего агрегата подключают установку, состоящую из органического цикла Ренкина (ОЦР), использующую тепло выхлопных газов газотурбинного двигателя, при этом теплообменник-экономайзер установки ОЦР выполняют трехпоточным, в котором вход третьего потока соединяют с выходом блока с газомасляными теплообменниками для подготовки топливного газа, а выход третьего потока соединяют со входом топливной системы газотурбинного двигателя, затем отбирают поток топливного газа из магистрального газопровода, фильтруют и направляют на нагрев в блок с газомасляными теплообменниками для подготовки топливного газа, где поочередно: нагревают поток топливного газа в первом газомасляном теплообменнике горячим маслом, отбираемым от нагнетателя газоперекачивающего агрегата, редуцируют в детандере, нагревают во втором газомасляном теплообменнике горячим маслом, отбираемым от газотурбинного двигателя газоперекачивающего агрегата, и нагревают в теплообменнике-экономайзере ОЦР горячим органическим теплоносителем, затем, завершая подогрев потока топливного газа, направляют его в топливную систему газотурбинного двигателя газоперекачивающего агрегата, одновременно с этим устанавливают электрическую связь с генератором детандера и с турбиной ОЦР и направляют электрическую энергию на энергоснабжение газоперекачивающего агрегата, при этом регулируют количество производимой электроэнергии, для чего изменяют площадь теплообменных поверхностей теплообменника-испарителя ОЦР.

Документы, цитированные в отчете о поиске Патент 2019 года RU2689508C1

СИСТЕМА НАГРЕВА ТОПЛИВНОГО ГАЗА С КОГЕНЕРАЦИОННОЙ УСТАНОВКОЙ 2013
  • Белоусов Юрий Васильевич
  • Пчелинцев Виктор Дмитриевич
  • Верещагин Николай Николаевич
  • Юренков Андрей Анатольевич
RU2561777C2
СПОСОБ УТИЛИЗАЦИИ ТЕПЛА ВЫХЛОПНЫХ ГАЗОВ ГАЗОТУРБИННЫХ ПРИВОДОВ ГАЗОПЕРЕКАЧИВАЮЩИХ АГРЕГАТОВ КОМПРЕССОРНОЙ СТАНЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Богуслаев Вячеслав Александрович
  • Горбачев Павел Александрович
  • Кононенко Петр Иванович
  • Михайлуца Вячеслав Георгиевич
RU2377427C1
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ С ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ 1992
  • Шпак В.Н.
RU2009389C1
Газоперекачивающий агрегат 1974
  • Ложкин Александр Николаевич
  • Васильев Юрий Николаевич
  • Ванюшин Юрий Николаевич
SU729379A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
Электрогенерирующий комплекс "СКАТ" 2015
  • Брусиловский Юрий Валерьевич
RU2609273C2

RU 2 689 508 C1

Авторы

Белоусов Юрий Васильевич

Даты

2019-05-28Публикация

2018-07-10Подача