СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ В ВЕРТИКАЛЬНЫХ ПУСКОВЫХ УСТАНОВКАХ Российский патент 2019 года по МПК F41G7/26 

Описание патента на изобретение RU2691131C1

Изобретение относится к военной технике и может найти применение для прицеливания крылатых ракет (далее - КР), размещаемых на носителях с вертикальными пусковыми установками.

Необходимым условием выведения изделия в заданный район (расчетную точку) для последующего самонаведения КР на цель является прицеливание КР, т.е. определение начального азимутального положения осей инерциального блока (далее - ИБ) изделия относительно направления истинного меридиана, до начала проведения режима предстартовой подготовки КР.

Погрешность прицеливания КР складывается из целого ряда погрешностей, с которыми изготовлены КР, пусковая установка (далее - ПУ) и др. Например, при установке КР на морских носителях погрешность прицеливания зависит от погрешности положения ИБ относительно внешних узлов КР, стыкуемых с ПУ, погрешности установки ПУ на носителе и погрешности установки навигационного комплекса носителя.

Фактические величины угловых рассогласований измеряются и проводится расчет азимутального положения ИБ КР относительно навигационного комплекса носителя.

В настоящее время широко применяется установка КР в транспортно-пусковом стакане (далее - ТПС). ТПС, с установленной КР, загружается в ПУ, при этом азимутальное положение ТПС относительно ПУ фиксируется стыковочным узлом - например, пазом или шпонкой.

В настоящее время известны способы последовательного измерения угловых рассогласований между элементами конструкции КР, ПУ и навигационным комплексом носителя в процессе их изготовления, сборки и монтажа.

Наиболее близким способом прицеливания, взятым за ближайший аналог, является способ прицеливания крылатых ракет, базирующихся на самоходной пусковой установке (патент на изобретение №2549215, заявка №2014103975 от 06.02.2014).

В существующем способе по результатам измерения взаимного положения промежуточных элементов рассчитывается величина углового рассогласования между ИБ КР и маршутно-навигационной системой топопривязки и ориентирования самоходной пусковой установки.

Технической задачей изобретения является повышение точности прицеливания КР в вертикальных пусковых установках путем уменьшения количества промежуточных измерений на заводе-изготовителе КР при проведении измерения углового рассогласования по крену вокруг продольной оси ОХ между ИБ КР и внешним узлом ТПС, стыкуемым с ПУ.

Техническая задача решается способом прицеливания КР в вертикальных пусковых установках, включающим определение азимутального угла инерциальной навигационной системы КР по известному азимутальному углу навигационного комплекса носителя. При этом, предварительно (на заводе-изготовителе КР) в горизонтальном положении КР проводят измерение углового рассогласования по крену между инерциальным блоком КР и внешним узлом транспортно-пускового стакана, стыкуемого с пусковой установкой, с последующим использованием результатов измерений для автоматического расчета поправки к азимутальному углу, измеренному навигационным комплексом носителя, во время предстартовой подготовки

После окончательной сборки ТПС с КР устанавливают на специальном стенде, позволяющем регулировать положение ТПС вокруг продольной оси (фиг. 1). На ТПС 5 с пазом фиксируют специальное приспособление 6 с шипом 4, имитирующее ответную часть на ПУ, стыкуемую с ТПС. С помощью квадранта 2, установленного на площадку 3, положение которой относительно шипа измерено с высокой степенью точности, выставляют КР в горизонт. После чего, в режиме электрических проверок определяют отклонение осей ИБ 7 от плоскости горизонта 1. Измеренное значение P1XP заносят в формуляр на КР и в постоянное запоминающее устройство (ПЗУ) бортовой цифровой вычислительной машины (БЦВМ) КР.

Погрешность определения угла отклонения осей ИБ от плоскости горизонта определяется точностными характеристиками ИБ, а именно, смещением нуля, акселерометров, применяемых в данном приборе. На сегодняшний день смещение нуля акселерометров составляет порядка 1⋅10-4 g, что, в свою очередь, приводит к погрешности измерения отклонения от плоскости горизонта в ±20 угл. сек.

Погрешность привязки шипа к контрольной площадке составляет ±30 угл. сек..

Погрешность измерения отклонений от плоскости горизонта средствами квадранта КО-10 составляет ±10 угл. сек.

Таким образом, суммарная погрешность измерения параметра P1XP не превысит ±40 угл. сек.

После установки ТПС с КР 1 в вертикальную ПУ 2 угловое рассогласование по крену αXP, измеренное в горизонтальном положении, является угловым рассогласованием по азимуту Δψ (фиг. 2).

Перед началом предстартовой подготовки параметр P1 передается из ПЗУ БЦВМ в систему управления оружием (СУО) корабля, где используется для расчета истинного азимутального угла ИБ КР:

где АПУ - значение азимута фиксационного узла ПУ, стыкуемого с ТПС.

Значение АПУ является суммой текущего значения азимута навигационного комплекса носителя и угла рассогласования между фиксационным узлом ПУ и навигационным комплексом, измеренным после монтажа ПУ.

Рассчитанный по формуле (1) азимутальный угол АКР из СУО передается в БЦВМ КР. После этого выполняется предстартовая подготовка и пуск КР.

Таким образом, можно констатировать, что данное изобретение позволит:

- повысить точность за счет исключения промежуточных измерений.

- исключить проведение трудоемких операций поэтапного контроля систем и блоков изделия, сократить время сборки;

- используя ИБ в качестве измерительного средства, проводить

последовательный контроль блоков, отсеков, модулей для выявления погрешности изготовления отдельных узлов на всех этапах сборки.

Представляется, что данный способ найдет применение как во вновь разрабатываемых изделиях, так и при модернизации существующих изделий.

Похожие патенты RU2691131C1

название год авторы номер документа
СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ НАКЛОННОГО СТАРТА 2018
  • Смирнов Олег Николаевич
  • Разина Надежда Алексеевна
  • Рябов Дмитрий Анатольевич
RU2704581C1
СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ НА САМОХОДНОЙ ПУСКОВОЙ УСТАНОВКЕ 2019
  • Бурганский Аркадий Ильич
  • Смирнов Олег Николаевич
  • Разина Надежда Алексеевна
  • Рябов Дмитрий Анатольевич
RU2710757C1
СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ, БАЗИРУЮЩИХСЯ НА САМОХОДНОЙ ПУСКОВОЙ УСТАНОВКЕ 2014
  • Бурганский Аркадий Ильич
  • Смирнов Олег Николаевич
  • Разина Надежда Алексеевна
  • Рябов Дмитрий Анатольевич
RU2549215C1
СПОСОБ ПРЕДСТАРТОВОЙ ВЫСТАВКИ ВЫСОКОТОЧНЫХ РАКЕТ 1995
  • Колесниченко С.В.
  • Романов П.С.
  • Суворин Е.И.
  • Бейдин В.Н.
  • Жильцов К.В.
  • Первухин Д.А.
RU2150124C1
МОБИЛЬНЫЙ ЗЕНИТНЫЙ РАКЕТНЫЙ КОМПЛЕКС 2003
  • Башкиров Л.Г.
  • Белый Ю.И.
  • Капустин В.А.
  • Кауфман Г.В.
  • Каюмжий В.Н.
  • Пигин Е.А.
  • Сидоров А.В.
  • Сокиран В.И.
  • Солнцев С.В.
RU2253820C2
Способ вывода вращающейся по углу крена ракеты с гироскопом направления в зону захвата цели головкой самонаведения и система для его осуществления 2017
  • Гусев Андрей Викторович
  • Морозов Владимир Иванович
  • Недосекин Игорь Алексеевич
  • Минаков Владимир Михайлович
  • Леонова Елена Львовна
  • Гранкин Алексей Николаевич
RU2659622C1
СПОСОБ АВТОНОМНОЙ НАЧАЛЬНОЙ ВЫСТАВКИ СТАБИЛИЗИРОВАННОЙ ПЛАТФОРМЫ ТРЕХОСНОГО ГИРОСТАБИЛИЗАТОРА В ПЛОСКОСТЬ ГОРИЗОНТА И НА ЗАДАННЫЙ АЗИМУТ 2015
  • Дерябин Максим Сергеевич
  • Захаров Анатолий Николаевич
  • Потапенков Виктор Кононович
RU2608337C1
КРЫЛАТАЯ РАКЕТА И СПОСОБ ЕЕ БОЕВОГО ПРИМЕНЕНИЯ 2017
  • Коржов Владимир Викторович
  • Косолапенко Станислав Юрьевич
  • Баланян Сергей Товмасович
  • Бабаянц Евгений Николаевич
  • Корсак Виталий Александрович
  • Писковацкий Андрей Анатольевич
RU2713546C2
СПОСОБ АЗИМУТАЛЬНОГО ПРИЦЕЛИВАНИЯ ПУСКОВОЙ УСТАНОВКИ 2015
  • Мартынов Вячеслав Иванович
  • Большаков Михаил Валентинович
  • Лавренов Александр Николаевич
  • Лавренов Олег Александрович
  • Кулаков Александр Валерьевич
  • Петухов Роман Андреевич
  • Иванов Илья Александрович
  • Свирин Николай Степанович
RU2604592C2
ВРАЩАЮЩАЯСЯ КРЫЛАТАЯ РАКЕТА 2014
  • Павлов Виктор Андреевич
RU2544446C1

Иллюстрации к изобретению RU 2 691 131 C1

Реферат патента 2019 года СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ В ВЕРТИКАЛЬНЫХ ПУСКОВЫХ УСТАНОВКАХ

Изобретение относится к военной технике и может найти применение при изготовлении крылатых ракет. Способ основан на использовании результатов измерений угловых рассогласований между инерциальным блоком и внешним узлом транспортно-пускового стакана, стыкуемого с пусковой установкой. Суть предлагаемого способа заключается в измерении углового рассогласования по крену между инерциальным блоком крылатой ракеты и внешним узлом транспортно-пускового стакана и последующим использовании результатов измерений для автоматического расчета поправки к азимутальному углу, измеренному навигационным комплексом носителя, во время предстартовой подготовки. Угловая поправка, измеряемая на заводе-изготовителе крылатой ракеты, записывается в постоянное запоминающее устройство бортовой цифровой вычислительной машины ракеты и используется во время предстартовой подготовки для расчета начального азимута инерциального блока крылатой ракеты. Расчет начального азимутального угла крылатой ракеты проводится во время предстартовой подготовки в автоматическом режиме без участия оператора и не требует дополнительных измерительных операций. Техническим результатом изобретения является повышение точности определения начального азимута инерциального блока крылатой ракеты. 2 ил.

Формула изобретения RU 2 691 131 C1

Способ прицеливания крылатых ракет в вертикальных пусковых установках, включающий определение азимутального угла инерциальной навигационной системы крылатой ракеты по известному азимутальному углу навигационного комплекса носителя, отличающийся тем, что в горизонтальном положении крылатой ракеты проводят измерение углового рассогласования по крену между инерциальным блоком крылатой ракеты и внешним узлом транспортно-пускового стакана, стыкуемого с пусковой установкой, с последующим использованием результатов измерений для автоматического расчета поправки к азимутальному углу, измеренному навигационным комплексом носителя, во время предстартовой подготовки.

Документы, цитированные в отчете о поиске Патент 2019 года RU2691131C1

СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ, БАЗИРУЮЩИХСЯ НА САМОХОДНОЙ ПУСКОВОЙ УСТАНОВКЕ 2014
  • Бурганский Аркадий Ильич
  • Смирнов Олег Николаевич
  • Разина Надежда Алексеевна
  • Рябов Дмитрий Анатольевич
RU2549215C1
СПОСОБ ПРЕДСТАРТОВОЙ ВЫСТАВКИ ВЫСОКОТОЧНЫХ РАКЕТ 1995
  • Колесниченко С.В.
  • Романов П.С.
  • Суворин Е.И.
  • Бейдин В.Н.
  • Жильцов К.В.
  • Первухин Д.А.
RU2150124C1
СПОСОБ АЗИМУТАЛЬНОГО ПРИЦЕЛИВАНИЯ ПУСКОВОЙ УСТАНОВКИ 2015
  • Мартынов Вячеслав Иванович
  • Большаков Михаил Валентинович
  • Лавренов Александр Николаевич
  • Лавренов Олег Александрович
  • Кулаков Александр Валерьевич
  • Петухов Роман Андреевич
  • Иванов Илья Александрович
  • Свирин Николай Степанович
RU2604592C2
МОДУЛЬНАЯ МНОГОМЕСТНАЯ КОРАБЕЛЬНАЯ ПУСКОВАЯ УСТАНОВКА ВЕРТИКАЛЬНОГО ПУСКА 2008
  • Белюстин Лев Владимирович
  • Бобров Александр Викторович
  • Максичев Александр Борисович
  • Мельников Валерий Юрьевич
  • Николаев Владимир Викторович
  • Смирнов Олег Николаевич
  • Хомяков Михаил Алексеевич
  • Сиддалингаппа Гурупрасад
  • Шритхар Арвинд Катти
  • Аласани Прасад Гоод
  • Санджей Кумар
  • Кришнамурти Пурушутам
RU2393409C1
US 6610971 B1, 26.08.2003.

RU 2 691 131 C1

Авторы

Смирнов Олег Николаевич

Разина Надежда Алексеевна

Рябов Дмитрий Анатольевич

Даты

2019-06-11Публикация

2018-08-03Подача