СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ, БАЗИРУЮЩИХСЯ НА САМОХОДНОЙ ПУСКОВОЙ УСТАНОВКЕ Российский патент 2015 года по МПК F41G7/26 

Описание патента на изобретение RU2549215C1

Изобретение относится к военной технике, а именно к технике прицеливания крылатых ракет средней дальности, и может найти применение на крылатых ракетах, размещаемых на подвижных наземных пусковых установках.

В настоящее время практически все крылатые ракеты оснащаются системами конечного наведения, использующими в качестве датчика первичной информации головки самонаведения (радиолокационные, инфракрасные и др.). Однако для корректного выбора назначенной к поражению цели, ракета должна с минимальной погрешностью выйти в расчетную точку для последующего самонаведения. Одним из определяющих факторов ошибки выхода в расчетную точку является погрешность определения начального азимутального угла ракеты.

Задачу определения начального азимутального угла ракеты решает система прицеливания. От способа реализации данной системы зависит точность определения начального азимутального угла ракеты.

В настоящее время широкое применение в схемах построения систем прицеливания самоходных пусковых установок (далее - СПУ) находит использование маршрутно-навигационных систем топопривязки и ориентирования (далее - МНСТО). Особенно это распространено в танках, системах залпового огня и т.д. Для реализации подобной схемы прицеливания необходимо предварительно измерить угловое рассогласование по курсу между приборными осями МНСТО и продольной осью дула (для танков), направляющих (для систем залпового огня) и т.д. На фиг.1 представлена схема измерений углового рассогласования по курсу между продольной осью МНСТО Sigma-30 и продольной осью дула самоходной гаубицы. Согласно руководству по эксплуатации на МНСТО Sigma-30 (документ №NTA14/Sigma30-011, стр.3-11), измерение угла рассогласования по курсу между приборными осями МНСТО 1 и продольной осью дула 2 самоходной гаубицы проводится посредством двух теодолитов 3 и 4 с использованием оптического контрольного элемента (далее - ОКЭ) 5, устанавливаемого на корпус МНСТО и материализующего приборные оси МНСТО, и специального приспособления с ОКЭ 6, устанавливаемого на дуло самоходной гаубицы и материализующего продольную ось дула. Устанавливая теодолиты 3 и 4 перпендикулярно к оптическим контрольным элементам 5 и 6 соответственно, а потом, проводя автоколлимационную привязку теодолитов 3 и 4 друг к другу, измеряют углы Ψ1 и Ψ2. Используя значения углов Ψ1 и Ψ2, определяют угловое рассогласование ΔΨ по курсу между продольной осью МНСТО 1 и продольной осью дула самоходной гаубицы 2. Значение ΔΨ заносится в постоянное запоминающее устройство (далее - ПЗУ) МНСТО 1 и в последующем используется при прицеливании самоходной гаубицы.

Данное решение по технической сущности наиболее близко к предлагаемому изобретению и поэтому взято авторами за ближайший аналог.

Необходимо отметить, что указанное техническое решение может быть признано оптимальным по точности только для танков и систем залпового огня, снаряды и выстрелы которых не имеют в своем составе инерциальных навигационных систем (далее - ИНС).

Что касается крылатых ракет, базирующихся на СНУ и имеющих в своем составе систему управления, основным элементом которых является инерциальная навигационная система, данный способ является грубым и требует усовершенствования.

Это связано со следующими обстоятельствами.

Во-первых, дальность полета крылатых ракет в десятки раз больше дальности полета снарядов, что в свою очередь приводит к пропорциональному увеличению отклонения от плоскости стрельбы.

Во-вторых, самоходные пусковые установки с крылатыми ракетами могут иметь, в отличие от танков, несколько индивидуальных ракето-мест, продольные оси которых, в отличие от систем залпового огня, в силу конструктивных особенностей непараллельны друг другу.

В-третьих, каждая ракета, в отличие от неуправляемых снарядов танков и выстрелов систем залпового огня, имеет в своем составе ИНС с индивидуальными значениями паспортных данных.

С целью повышения точности и адаптации рассмотренного способа прицеливания к особенностям применения в ракетной технике авторами предлагается проводить измерения углового рассогласования по курсу между ИНС ракеты и МНСТО СПУ в несколько этапов с учетом особенностей конструкции ракеты, а также способов установки МНСТО и ракеты на СПУ.

Суть предлагаемого способа заключается в последовательном измерении угловых рассогласований по курсу между элементами конструкции ракеты и СПУ с целью получения суммарного углового рассогласования по курсу между ИНС ракеты и МНСТО СПУ и последующим использованием результатов проведенных измерений во время предстартовой подготовки для определения истинного азимутального угла ракеты, путем расчета поправки к азимутальному углу, измеренному МНСТО.

На фиг.2 показана структурная схема точностных параметров, измерения которых необходимо провести в процессе изготовления ИНС, ракеты и СПУ. Обозначения, наименования, места измерения и хранения параметров a15 приведены в таблице.

На фиг.3 на примере одной ракеты из боекомплекта, назначенного к проведению стрельбы, схематично показаны места хранения параметров a15 и информационные связи, обеспечивающие передачу параметров a1, а2, и азимутального угла АМНСТО, измеренного МНСТО 4, в системе управления оружием (СУО) СПУ 3 для расчета начального азимутального угла Aj во время предстартовой подготовки.

Перед началом предстартовой подготовки параметр a1 передается из ПЗУ ИНС 1 в БЦВМ 2, а оттуда, совместно с параметром а2, - в СУО СПУ 3. Одновременно из МНСТО 4 в СУО СПУ 3 передается азимутальный угол, измеренный МНСТО 4. В СУО СПУ 3, с учетом параметров а35, хранящихся в ПЗУ СУО СПУ, вычисляются:

- поправка к азимутальному углу, измеренному МНСТО, по формуле:

где j - номер ракето-места;

- азимутальный угол для каждой ракеты, назначенной к стрельбе:

где j - номер ракето-места.

Рассчитанный по формуле (2) азимутальный угол Aj передается в БЦВМ 2 ракеты, а оттуда - в ИНС 1. После этого выполняется предстартовая подготовка и пуск ракеты.

Данный способ позволяет проводить операцию прицеливания для любой ракеты, расположенной на любом ракето-месте любой СПУ.

С целью оценки точности предложенного способа прицеливания был проведен расчет, который показал, что суммарная погрешность определения начального азимутального угла ИНС ракеты удовлетворяет предъявляемым к ракетам данного класса требованиям.

Таким образом, можно констатировать, что изобретение позволяет создать полностью автоматический способ прицеливания, отвечающий требованиям по точности для ракет средней дальности. Представляется, что данный способ найдет применение как во вновь разрабатываемых ракетных комплексах, так и при модернизации существующих комплексов ракетного оружия.

Таблица СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ, БАЗИРУЮЩИХСЯ НА САМОХОДНОЙ ПУСКОВОЙ УСТАНОВКЕ Наименование параметра Обозначение Место измерения Место хранения 1. Угловое рассогласование по курсу между осями ИНС и посадочным местом под ИНС a1 Завод-изготовитель ИНС ПЗУ ИНС 2. Угловое рассогласование по курсу между посадочным местом под ИНС изделия и внешними стыковочными узлами ТПС a2 Завод-изготовитель ракеты ПЗУ БЦВМ ракеты 3. Угловое рассогласование по курсу между продольной осью ТПС и базовой линией, проходящей через центры ложементов СПУ а3 Завод-изготовитель СПУ ПЗУ СУО СПУ 4. Угловое рассогласование по курсу между базовой линией, проходящей через центры ложементов СПУ и продольной осью шасси СПУ a4 Завод-изготовитель СПУ ПЗУ СУО СПУ 5. Угловое рассогласование по курсу между продольной осью МНСТО и продольной осью шасси СПУ а5 Завод-изготовитель СПУ ПЗУ СУО СПУ

Похожие патенты RU2549215C1

название год авторы номер документа
СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ НА САМОХОДНОЙ ПУСКОВОЙ УСТАНОВКЕ 2019
  • Бурганский Аркадий Ильич
  • Смирнов Олег Николаевич
  • Разина Надежда Алексеевна
  • Рябов Дмитрий Анатольевич
RU2710757C1
СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ В ВЕРТИКАЛЬНЫХ ПУСКОВЫХ УСТАНОВКАХ 2018
  • Смирнов Олег Николаевич
  • Разина Надежда Алексеевна
  • Рябов Дмитрий Анатольевич
RU2691131C1
СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ НАКЛОННОГО СТАРТА 2018
  • Смирнов Олег Николаевич
  • Разина Надежда Алексеевна
  • Рябов Дмитрий Анатольевич
RU2704581C1
БЕРЕГОВОЙ РАКЕТНЫЙ ПРОТИВОКОРАБЕЛЬНЫЙ КОМПЛЕКС 2005
  • Петрушенко Владимир Георгиевич
  • Маслов Анатолий Григорьевич
  • Тевелев Вадим Исаакович
  • Макаров Александр Владимирович
  • Немыченков Владимир Сергеевич
  • Сокур Лев Яковлевич
  • Масленников Константин Николаевич
  • Меньшов Александр Григорьевич
  • Антонов Павел Борисович
  • Коржавин Георгий Анатольевич
  • Иванов Виктор Петрович
  • Яковлев Михаил Михайлович
RU2285889C1
СПОСОБ ПРЕДСТАРТОВОЙ ВЫСТАВКИ ВЫСОКОТОЧНЫХ РАКЕТ 1995
  • Колесниченко С.В.
  • Романов П.С.
  • Суворин Е.И.
  • Бейдин В.Н.
  • Жильцов К.В.
  • Первухин Д.А.
RU2150124C1
САМОХОДНАЯ ПУСКОВАЯ УСТАНОВКА 2007
  • Маслов Анатолий Григорьевич
  • Марков Олег Тувьевич
  • Меньшов Александр Григорьевич
  • Морозов Вячеслав Павлович
  • Петрушенко Владимир Георгиевич
  • Спасов Юрий Алексеевич
  • Тевелев Вадим Исаакович
  • Юрчук Евгений Семенович
  • Яковлев Михаил Михайлович
RU2343390C1
ВРАЩАЮЩАЯСЯ КРЫЛАТАЯ РАКЕТА 2014
  • Павлов Виктор Андреевич
RU2544446C1
МОБИЛЬНЫЙ ЗЕНИТНЫЙ РАКЕТНЫЙ КОМПЛЕКС 2003
  • Башкиров Л.Г.
  • Белый Ю.И.
  • Капустин В.А.
  • Кауфман Г.В.
  • Каюмжий В.Н.
  • Пигин Е.А.
  • Сидоров А.В.
  • Сокиран В.И.
  • Солнцев С.В.
RU2253820C2
КРЫЛАТАЯ РАКЕТА И СПОСОБ ЕЕ БОЕВОГО ПРИМЕНЕНИЯ 2017
  • Коржов Владимир Викторович
  • Косолапенко Станислав Юрьевич
  • Баланян Сергей Товмасович
  • Бабаянц Евгений Николаевич
  • Корсак Виталий Александрович
  • Писковацкий Андрей Анатольевич
RU2713546C2
СИСТЕМА НАВЕДЕНИЯ ВЫСОКОТОЧНОГО ОРУЖИЯ ДАЛЬНЕЙ ЗОНЫ 2003
  • Шипунов Аркадий Георгиевич
  • Кузнецов Владимир Маркович
  • Капустин Анатолий Сергеевич
  • Запесочный Валерий Игоревич
  • Овсенев Сергей Сергеевич
  • Шабловский Владимир Иванович
  • Иванов Вячеслав Викторович
RU2284444C2

Иллюстрации к изобретению RU 2 549 215 C1

Реферат патента 2015 года СПОСОБ ПРИЦЕЛИВАНИЯ КРЫЛАТЫХ РАКЕТ, БАЗИРУЮЩИХСЯ НА САМОХОДНОЙ ПУСКОВОЙ УСТАНОВКЕ

Изобретение относится к военной технике и может найти применение при изготовлении наземных передвижных ракетных комплексов с крылатыми ракетами средней дальности. Технический результат - повышение точности. Для этого осуществляют сбор данных от маршрутно-навигационной системы топопривязки и ориентирования (МНСТО) из состава самоходной пусковой установки (дСПУ) и результатов измерений угловых рассогласований между осями инерциальной навигационной системы (ИНС) ракеты и МНСТО. При этом осуществляют измерение угловых рассогласований по курсу между продольной осью ИНС ракеты и продольной осью МНСТО и последующим использованием результатов проведенных измерений во время предстартовой подготовки для определения истинного азимутального угла ракеты путем расчета поправки к азимутальному углу, измеренному МНСТО. Массив угловых поправок, измеряемых на заводах-изготовителях ИНС, ракеты и СПУ записывается в постоянные запоминающие устройства. 3 ил., 1 табл.

Формула изобретения RU 2 549 215 C1

Способ прицеливания крылатых ракет, базирующихся на самоходной пусковой установке, включающий определение азимутального угла инерциальной навигационной системы ракеты по известному азимутальному углу маршрутно-навигационной системы топопривязки и ориентирования самоходной пусковой установки, отличающийся тем, что в процессе изготовления ракет проводят предварительные измерения угловых рассогласований между элементами конструкции ракеты и самоходной пусковой установки с последующим расчетом суммарного углового рассогласования по курсу между инерциальной навигационной системой ракеты и маршрутно-навигационной системой топопривязки и ориентирования и использованием результатов проведенных измерений для автоматического расчета поправки к азимутальному углу, измеренному маршрутно-навигационной системой топопривязки и ориентирования.

Документы, цитированные в отчете о поиске Патент 2015 года RU2549215C1

СПОСОБ ПРИЦЕЛИВАНИЯ РАКЕТЫ-НОСИТЕЛЯ НА УЧАСТКЕ ПОЛЕТА 1-Й СТУПЕНИ 2002
  • Попов В.Д.
  • Смирнов В.В.
  • Меркулов Д.В.
  • Осипов Н.А.
RU2210716C1
Ртутный выпрямитель 1947
  • Барский С.З.
SU72929A1
СПОСОБ ПРИЦЕЛИВАНИЯ ПРИ ПУСКЕ УПРАВЛЯЕМОЙ РАКЕТЫ 2003
  • Николаев Р.П.
  • Миронов А.И.
  • Весельев А.Д.
  • Григорьев В.Г.
  • Григорьев В.В.
RU2243481C1
КАЗАКОВ И
Е., МИШАКОВ А
Ф
Авиационные управляемые ракеты, ч
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
проф
Н
Е
Жуковского, 1985, с
Приспособление для постепенного включения и выключения фрикционных муфт в самодвижущихся экипажах и т.п. 1919
  • Сабанеев К.Д.
SU356A1
US 5974940 A, 02.11.1999

RU 2 549 215 C1

Авторы

Бурганский Аркадий Ильич

Смирнов Олег Николаевич

Разина Надежда Алексеевна

Рябов Дмитрий Анатольевич

Даты

2015-04-20Публикация

2014-02-06Подача