Способ экстракционного концентрирования и очистки плутония Российский патент 2019 года по МПК G21F9/28 

Описание патента на изобретение RU2691132C1

Изобретение относится к радиохимической переработке отработавшего ядерного топлива (ОЯТ), конкретно - к экстракционному аффинажу плутония.

Аффинажный цикл в линии плутония является необходимым переделом в процессе переработки ОЯТ, выполняя задачи доочистки и концентрирования плутония перед оксалатным осаждением. Простейшая структура аффинажного цикла включает операции экстракции, промывки экстракта и реэкстракции плутония, при этом степень концентрирования плутония определяется отношением величин потока питания и реэкстрагирующего раствора. Такая структура принята для заводов UP-3 и Thorp (см., например, Ревенко Ю.А., Подойницын С.В., Колупаев Д.Н. Радиохимические технологии для регенерации делящихся материалов из отработавшего ядерного топлива. Изд-во Томского политехнического университета, стр. 160-170, 2014 г.). Степень концентрирования в таких схемах, как правило, невысока.

Существенно выше степень концентрирования в экстракционных циклах, работающих в режиме рефлакс-процесса (Землянухин В.И., Ильенко Е.И., Кондратьев А.Н., Лазарев Л.Н., Царенко А.Ф., Царицына Л.Г. Радиохимическая переработка ядерного топлива АЭС. М., Энергоатомиздат, стр. 110, 1983 г.). Главный отличительный признак рефлакс-процесса - деление реэкстракта плутония на поток, выводимый из цикла, и на поток, возвращаемый (рефлаксируемый) в экстракционный цикл. Возврат производится после корректировки состава (проточной или в отдельном аппарате), позволяющей проводить экстракцию из возвратного потока, а ступень ввода возвратного потока выбирается исходя из конкретной структуры цикла в зоне экстракции или в зоне промывки.

В рефлакс-процессе степень концентрирования определяется соотношением величин потока и выводимой из цикла доли потока реэкстракта, что существенно выше, чем в безрефлаксном процессе.

Недостаток рефлакс-процесса - протяженная зона накопления плутония в экстракционном каскаде. Это большой объем незавершенного производства, что нежелательно для делящегося материала. Кроме того, при отклонении режима работы каскада от регламентного зона накопленного плутония будет смещаться либо в рафинат, либо в блок регенерации экстрагента, что недопустимо.

Наиболее близким является способ экстракционного противоточного концентрирования элементов (Авт. свид. СССР №1588428, опубл. 30.08.1990 г., бюл. №32), согласно которому экстракционный цикл состоит из двух субциклов (извлекающего и концентрирующего), обслуживаемых единым потоком оборотного экстрагента. Способ включает экстракцию выделяемого элемента, промывку экстракта, реэкстракцию, корректировку состава реэкстракта и повторную экстракцию, промывку и реэкстракцию, при этом оборотный экстрагент разделяют на два потока, больший по величине поток направляют на экстракцию концентрируемого элемента из потока питания, реэкстракт, получаемый при последующей обработке этого раствора, направляют на корректировку состава и последующую повторную экстракцию меньшим по величине потоком оборотного экстрагента. Затем реэкстрагируют концентрируемый элемент из малого потока (реэкстракт является продуктовым потоком процесса), после чего меньший поток объединяют с основным потоком экстракта

Перечисленные особенности способа - последовательный перенос продукта в уменьшающиеся по величине потоки, двойной перенос в фазу экстрагента с последующей реэкстракций, отсутствие зон накопления продукта, нечувствительность к колебаниям величин потоков - обеспечивают показатели по концентрированию и очистке, недостижимые в иных экстракционных процессах. При переработке технециевого продукта с содержанием технеция-99 1,25 мг/л получен реэкстракт с содержанием технеция 3,12 г/л и количественной очисткой от стабильных и радиоактивных примесей. При переработке уранового раствора, содержащего 1,3 г/л урана и макроколичества кальция, магния и железа, получен реэкстракт, 130 г/л урана, в котором Са, Mg и Fe не обнаружены.

Анализ возможностей прототипа для решения задачи концентрирования и очистки плутония показал, что способ-прототип, решая задачу концентрирования, не может обеспечить эффективную очистку плутония от четырехвалентных актиноидов, в частности, от радиогенного тория-228.

При реэкстракции (как в извлекающем, так и в концентрирующем субцикле) с применением комплексообразователей 228Th будет полностью реэкстрагироваться совместно с плутонием. При восстановительной реэкстракции, проводимой в слабокислой среде, 228Th также будет сопровождать плутоний из-за слабой экстрагируемости тория при невысоком содержании азотной кислоты в водной фазе.

Задача: разработка технологичного способа безнакопительного концентрирования и очистки плутония, обеспечивающего эффективную очистку от четырехвалентных актиноидов.

Техническим результатом предлагаемого изобретения является повышение очистки плутония от четырехвалентных актиноидов, в частности, от тория-228.

Указанный технический результат достигается в способе экстракционного концентрирования и очистки плутония, включающем экстракцию выделяемого элемента, промывку экстракта и реэкстракцию, корректировку состава реэкстракта, повторную экстракцию оборотным экстрагентом, промывку полученного экстракта и повторную реэкстракцию с выводом реэкстракта из процесса, объединение органического потока после повторной реэкстракции с промытым экстрактом от первой экстракции, причем первую экстракцию и промывку экстракта осуществляют при температуре 30-50°С, а выводимый из процесса реэкстракт, содержащий плутоний (III), перед выводом из цикла обрабатывают в противотоке оборотным экстрагентом при отношении потоков органической (О) и водной (В) фаз О:В≥1,4 с присоединением получаемого экстракта к экстракту, поступающему с операции повторной экстракции плутония.

В частном случае в качестве экстрагента используют раствор трибутилфосфата в ароматическом углеводороде, преимущественно, 30% об. трибутилфосфата в триэтилбензоле.

При проведении экстракционного концентрирования и очистки плутония по предлагаемому способу устраняются отмеченные выше недостатки способа-прототипа:

- проведение экстракции плутония из потока питания и промывки экстракта в указанном температурном интервале повышает экстрагируемость плутония (IV) и снижает экстрагируемость тория, что обеспечивает сброс основного количества тория в рафинат;

- отмывка продуктового потока, содержащего плутоний (III), оборотным экстрагентом при повышенном расходе органического потока удаляет остатки тория из продуктового потока.

На фиг. представлена схема экстракционного цикла (блок регенерации экстрагента опущен). Способ, в соответствии с представленной схемой, осуществляется следующим образом.

Исходный раствор (поток питания) 46 поступает в ступень 8 блока 60, состоящего из ступеней 1-16. На этом блоке производится экстракция плутония и промывка экстракта, входные потоки блока подогреваются до 45°С. Рафинат первой экстракции 57 блока 60 выводится из процесса. Промытый экстракт из ступени 16 поступает на блок 61, состоящий из ступеней 17-28, где производится восстановительная реэкстракция плутония. Реэкстрагенты 51 и 52 поступают различными потоками в ступени 22 и 28 соответственно. Выходящий из ступени 17 первый реэкстракт 53 поступает на корректировку состава, включающую его подкисление, разрушение избытка восстановителя и окисление Pu (III) до Pu (IV). Эта операция выполняется в колонне каталитического окисления, обозначенной в сквозной нумерации ступеней номером 29.

Откорректированный по составу и степени окисления плутония первый реэкстракт 53 поступает в ступень 34 блока 62, состоящего из ступеней 30-39 для повторной экстракции. Рафинат 56 повторной экстракции блока 62 направляется в зону экстракции блока 60 (ступень 5), экстракт после промывки на ступенях 35-39 поступает на ступень 42 блока 63, состоящего из ступеней 40-45, где на ступенях 42-45 производится повторная восстановительная реэкстракция плутония. Второй реэкстракт 59 дополнительно отмывается от тория оборотным экстрагентом 49 на ступенях 40 и 41 блока 63. Выходящий из ступени 45 органический поток присоединяется к потоку, поступающему на ступень 17 на первую реэкстракцию. Реэкстрагентом для первой (потоки 51 и 52) и повторной (поток 58) реэкстракции выбран карбогидразид, быстро и полно восстанавливающий Pu (IV) до Pu (III).

Пример 1. Было проведено математическое моделирование процесса с представленной структурой экстракционного цикла, результаты которого сведены в таблицу 1.

*) ТБФ - трибутилфосфат, КГ - карбогидразид, ДТПА - диэтилентриаминпентауксусная кислота

Как следует из данных таблицы 1, степень концентрирования плутония (отношение концентрации плутония в потоке 59 к концентрации в потоке 46) составляет 14, коэффициент очистки от тория - 3⋅104.

Для сопоставления было проведено математическое моделирование процесса по способу-прототипу, т.е. без подогрева входных потоков блока 60, без подключения потока оборотного экстрагента 49 и с передачей органического потока из ступени 39 в ступень 40. Остальные потоки по величине и составу были идентичными представленным в таблице 1. В результате был получен второй реэкстракт следующего состава: HNO3 - 32 г/л, Pu - 70,82 г/л и Th - 11,8 мг/л. Таким образом, при проведении процесса по способу-прототипу сохраняется степень концентрирования, однако коэффициент очистки плутония от тория составляет всего 12, что ниже достигаемого в предлагаемом способе в несколько тысяч раз (2,75⋅103).

Результат, полученный при проведении математического моделирования, не исчерпывает возможности предлагаемого способа по концентрированию плутония и определяется только принятой для расчетов экстракционной системой, 30% ТБФ в н-парафинах. В этой системе при содержании плутония 22-25 г/л (зависит от конкретного состава разбавителя) сольват плутония выделяется в собственную фазу (т.н. «третья фаза»), что недопустимо.

Однако применение ароматических разбавителей, например, триэтилбензола (ТЭБ), исключает это явление, что важно как для повышения содержания плутония в продуктовом реэкстракте, так и для повышения безопасности и устойчивости работы аффинажного цикла.

Для подтверждения возможности повышения концентрирования плутония было проведено математическое моделирование схемы, представленной на фиг., с откорректированными величинами и составами некоторых потоков.

Пример 2. Величины и составы потоков представлены в таблице 2. Из таблицы 2 видно, что в схеме уменьшены потоки оборотного экстрагента, поступающего на блоки 62 и 63, увеличена концентрация карбогидразида во втором реэкстрагенте и дополнительно в этот поток добавлен второй восстановитель - диформилгидразин (ДФГ). Поток второго реэкстрагента также уменьшен в 1,7 раза.

Как следует из состава второго реэкстракта, степень концентрирования плутония повышена до 24 при сохранении коэффициента очистки от тория, равного 3⋅104.

В таблице 3 представлены расчетные составы водной и органической фаз на каждой из ступеней аффинажного цикла.

Из данных, представленных в таблице 3, можно сделать следующие основные выводы:

- перенос плутония на блок 60 с водным потоком и на блок 61 с органическим потоком невелик, 0,2% от поступающего с потоком питания, и не влияет на работу блоков 60 и 61;

- торий в преобладающей части сбрасывается с рафинатом блока 60. Накопление тория в блоке 60 незначительно и не влияет на работу блока;

- накопление плутония в органической фазе блока 62 (ступени 34-39) было бы недопустимо при использовании парафинового разбавителя.

Таким образом, предлагаемый способ радикально превосходит способ-прототип по качеству очистки плутония от четырехвалентных актиноидов, в частности от радиогенного тория, сохраняя при этом все преимущества безрефлаксного концентрирования.

Похожие патенты RU2691132C1

название год авторы номер документа
СПОСОБ ВЫДЕЛЕНИЯ И РАЗДЕЛЕНИЯ ПЛУТОНИЯ И НЕПТУНИЯ 2015
  • Бугров Константин Владимирович
  • Корченкин Константин Константинович
  • Логунов Михаил Васильевич
  • Лукин Сергей Александрович
  • Машкин Александр Николаевич
  • Мелентьев Анатолий Борисович
  • Самарина Наталья Сергеевна
RU2642851C2
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА 2020
  • Волк Владимир Иванович
  • Алексеенко Владимир Николаевич
  • Меркулов Игорь Александрович
  • Обедин Андрей Викторович
  • Подрезова Любовь Николаевна
  • Рубисов Владимир Николаевич
RU2727140C1
Способ непрерывного экстракционного противоточного концентрирования элементов 1988
  • Волк Владимир Иванович
  • Никифоров Александр Сергеевич
  • Захаркин Борис Степанович
  • Веселов Сергей Николаевич
  • Карелин Александр Иванович
  • Белов Вячеслав Аркадьевич
  • Короткевич Владимир Михайлович
  • Дорда Феликс Анатольевич
  • Шкляр Леонид Исаакович
  • Шпунт Лев Борисович
SU1588428A1
СПОСОБ РАЗДЕЛЕНИЯ УРАНА И ПЛУТОНИЯ В ЭКСТРАКЦИОННОЙ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА 2010
  • Волк Владимир Иванович
  • Веселов Сергей Николаевич
  • Двоеглазов Константин Николаевич
  • Жеребцов Александр Анатольевич
  • Зверев Дмитрий Владимирович
  • Кривицкий Юрий Григорьевич
  • Алексеенко Владимир Николаевич
  • Третьяков Александр Афанасьевич
RU2449393C2
СПОСОБ ИЗВЛЕЧЕНИЯ МОЛИБДЕНА-99 ИЗ РАСТВОРА ОБЛУЧЕННЫХ УРАНОВЫХ МИШЕНЕЙ 2013
  • Баранов Сергей Васильевич
  • Баторшин Георгий Шамилевич
  • Бугров Константин Владимирович
  • Логунов Михаил Васильевич
  • Ворошилов Юрий Аркадьевич
  • Яковлев Николай Геннадьевич
  • Мурзин Андрей Анатольевич
  • Зильберман Борис Яковлевич
  • Голецкий Николай Дмитриевич
  • Блажева Ирина Владимировна
  • Кудинов Александр Станиславович
  • Агафонова-Мороз Марина Сергеевна
  • Федоров Юрий Степанович
RU2545953C2
ЭКСТРАКЦИОННЫЙ СПОСОБ ПЕРЕРАБОТКИ УРАНСОДЕРЖАЩИХ РАСТВОРОВ 2022
  • Алексеенко Владимир Николаевич
  • Волк Владимир Иванович
  • Рубисов Владимир Николаевич
  • Дьяченко Антон Сергеевич
RU2793956C1
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОАКТИВНЫХ ОТХОДОВ С ФРАКЦИОНИРОВАНИЕМ РАДИОНУКЛИДОВ 2019
  • Хаперская Анжелика Викторовна
  • Меркулов Игорь Александрович
  • Сеелев Игорь Николаевич
  • Алексеенко Владимир Николаевич
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Наумов Андрей Александрович
  • Камаева Елена Андреевна
  • Петров Юрий Юрьевич
  • Блажева Ирина Владимировна
RU2709826C1
СПОСОБ ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ ЦИРКОНИЯ И ГАФНИЯ 2012
  • Зильберман Борис Яковлевич
  • Кардаполов Александр Викторович
  • Копарулина Елена Семеновна
  • Лихачева Ольга Геннадьевна
  • Москаленко Олег Петрович
  • Свиридов Александр Михайлович
  • Старченко Вадим Александрович
  • Штуца Михаил Георгиевич
RU2521561C2
СПОСОБ ОЧИСТКИ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ 1994
  • Романовский В.Н.
  • Зильберман Б.Я.
  • Зайцев Б.Н.
  • Квасницкий И.Б.
  • Самохотов С.А.
  • Шкляр Л.И.
  • Кузнецов Г.И.
  • Кесоян Г.А.
  • Епифанова О.М.
RU2109681C1
СПОСОБ ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ И КОНЦЕНТРИРОВАНИЯ ЦИРКОНИЯ И ГАФНИЯ 2000
  • Волк В.И.
  • Веселов С.Н.
  • Солонин М.И.
  • Жирнов Ю.П.
  • Бутя Е.Л.
  • Волков И.В.
  • Копарулин И.Г.
  • Котрехов В.А.
  • Лосицкий А.Ф.
  • Черемных Г.С.
  • Штуца М.Г.
RU2190677C2

Иллюстрации к изобретению RU 2 691 132 C1

Реферат патента 2019 года Способ экстракционного концентрирования и очистки плутония

Изобретение относится к радиохимической технологии и может быть использовано в процессе экстракционного аффинажа плутония. Способ экстракционного концентрирования и очистки плутония включает экстракцию плутония из потока питания, промывку экстракта и реэкстракцию плутония, корректировку состава реэкстракта, повторную экстракцию плутония оборотным экстрагентом из откорректированного реэкстракта, повторную реэкстракцию плутония с выводом реэкстракта из процесса в качестве продуктового потока, переработку рафината повторной экстракции на стадии извлечения плутония из потока питания и присоединение органического потока после повторной реэкстракции к промытому экстракту от первой экстракции. Первую экстракцию и промывку экстракта осуществляют при температуре 30-50°С. Реэкстракт, содержащий плутоний (III), перед выводом из цикла обрабатывают в противотоке оборотным экстрагентом при соотношении потоков фаз О:В≥1,4 с присоединением получаемого экстракта к экстракту, поступающему с операции повторной экстракции. Изобретение позволяет повысить очистку плутония от четырехвалентных актиноидов. 1 з.п. ф-лы, 1 ил., 3 табл.

Формула изобретения RU 2 691 132 C1

1. Способ экстракционного концентрирования и очистки плутония, включающий экстракцию выделяемого элемента, промывку экстракта и реэкстракцию, корректировку состава реэкстракта, повторную экстракцию оборотным экстрагентом, промывку полученного экстракта и повторную реэкстракцию с выводом реэкстракта из процесса, объединение органического потока после повторной реэкстракции с промытым экстрактом от первой экстракции, отличающийся тем, что первую экстракцию и промывку экстракта осуществляют при температуре 30-50°С, а выводимый из процесса реэкстракт, содержащий плутоний(III), перед выводом из процесса обрабатывают в противотоке оборотным экстрагентом при отношении потоков органической (О) и водной (В) фаз O : В≥1,4 с присоединением получаемого экстракта к экстракту, поступающему с операции повторной экстракции плутония.

2. Способ по п. 1, отличающийся тем, что в качестве экстрагента используют раствор трибутилфосфата в ароматическом углеводороде, преимущественно 30% об. трибутилфосфата в триэтиленбензоле.

Документы, цитированные в отчете о поиске Патент 2019 года RU2691132C1

Способ непрерывного экстракционного противоточного концентрирования элементов 1988
  • Волк Владимир Иванович
  • Никифоров Александр Сергеевич
  • Захаркин Борис Степанович
  • Веселов Сергей Николаевич
  • Карелин Александр Иванович
  • Белов Вячеслав Аркадьевич
  • Короткевич Владимир Михайлович
  • Дорда Феликс Анатольевич
  • Шкляр Леонид Исаакович
  • Шпунт Лев Борисович
SU1588428A1
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКООБОГАЩЕННОГО УРАНА 1998
  • Башлачев В.Н.
  • Деменко А.А.
  • Житков С.А.
  • Стихин В.Ф.
  • Терентьев Г.А.
  • Шадрин Г.Г.
RU2131476C1
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА (ВАРИАНТЫ) 2003
  • Зильберман Б.Я.
  • Сытник Л.В.
  • Горский А.Г.
  • Боровиков Е.А.
  • Ковригина Е.Н.
RU2249267C2
СN 103305702 A, 18.09.2013
ТЕРМОКАТОД 1972
SU434513A1

RU 2 691 132 C1

Авторы

Волк Владимир Иванович

Веселов Сергей Николаевич

Рубисов Владимир Николаевич

Машкин Александр Николаевич

Ворошилов Юрий Аркадьевич

Даты

2019-06-11Публикация

2018-07-26Подача