ЭКСТРАКЦИОННЫЙ СПОСОБ ПЕРЕРАБОТКИ УРАНСОДЕРЖАЩИХ РАСТВОРОВ Российский патент 2023 года по МПК G21C19/46 

Описание патента на изобретение RU2793956C1

Изобретение относится к экстракционной переработке урансодержащих растворов и может быть использовано в технологии переработки облученного ядерного топлива атомных электростанций (преимущественно), а также различных урансодержащих растворов, в том числе оборотных материалов.

Во всех случаях экстракционный цикл переработки завершается операцией реэкстракции урана из органической фазы (раствор трибутилфосфата, ТБФ) в разбавителе) в водную фазу.

Реэкстракцию, как правило, осуществляют слабым (0,05-0,07 моль/л) раствором азотной кислоты при температуре ~ 60°С (Громов Б.В., Савельева В.И., Шевченко В.Б. Химическая технология облученного ядерного топлива. М. Энергоатомиздат, 1983, с. 351). Особенности изотермы распределения урана в указанных условиях не позволяют получить реэкстракты с содержанием урана более 100 г/л, что требует значительных энергозатрат на упаривание реэкстракта.

Существенно более высокие концентрации урана достигаются в процессах реэкстракции урана с применением реагентных реэкстрагентов. Наиболее концентрированные реэкстракты, более 300 г/л по урану, получены при использовании в качестве реэкстрагента растворов карбамида, 60-400 г/л, в определенных условиях, регламентирующих взаимосвязь таких параметров процесса реэкстракции как температура, содержание урана в экстракте, содержание азотной кислоты в экстракте, содержание карбамида в реэкстрагенте и соотношение потоков органической и водной фаз (Патент РФ №2 170 964 С1, опубл. 20.07.2001).

По поставленной задаче и технической сущности этот способ наиболее близок к заявляемому и выбран в качестве прототипа.

Анализ способа-прототипа выявил ряд его существенных недостатков.

1. Даже при проведении процесса реэкстракции в регламентных параметрах остаточное содержание урана в оборотном экстрагенте составляет в среднем 20 мг/л. На операции содовой регенерации происходит концентрирование урана в 10-12 раз, что создает проблемы при утилизации регенерата.

2. Незначительные отклонения от регламентных параметров, неизбежные в реальных производственных условиях, приводят (цитируем описание изобретения к патенту) «… к резкому увеличению содержания урана в оборотном экстрагенте, уменьшению содержания урана в реэкстрактах, увеличению содержания урана в карбонатных промывных растворах, что может привести к образованию в них осадков карбонатных соединений урана».

3. При осаждении полиуранатов аммония из карбамидных реэкстрактов, а это единственный вариант их переработки (Патент РФ №2 114 469 С1, опубл. 27.06.1998), образуется маточный раствор с общим солесодержанием (карбамид + нитрат аммония) до 500 г/л. Технология утилизации такого продукта отсутствует.

Техническим результатом предлагаемого изобретения является снижение потерь урана с оборотным экстрагентом, повышение технологической устойчивости процесса и возможность утилизации маточных растворов после осаждения урана из реэкстрактов.

Результат достигается в способе переработки урансодержащих растворов, включающем экстракцию урана, промывку экстракта и реэкстракцию урана, при этом реэкстракцию осуществляют водным раствором аминокислоты (глицина).

Реэкстрагирующий раствор содержит 1,0-2,5 моль/л глицина в зависимости от требуемой степени концентрирования урана.

Дополнительно реэкстрагирующий раствор содержит 0,03-0,07 моль/л азотной кислоты.

Реэкстракцию проводят при температуре 25-60°С.

Эффективность применения водных растворов глицина, NH2CH2COOH в качестве реэкстрагентов урана из трибутилфосфатных экстрактов определяется комплексообразованием уранила с карбоксильной группой и связыванием образующейся азотной кислоты аминогруппой молекулы глицина.

Ввод в реэкстрагирующий раствор малых количеств азотной кислоты препятствует появлению в оборотном экстрагенте урана, связанного с дибутилфосфорной кислотой, присутствующей в незначительных количествах в реальных растворах ТБФ.

Из глицинсодержащего реэкстракта осаждают пероксид урана или (при добавлении плутония) пероксид урана-плутония, глицин в маточном растворе разлагают до остаточного содержания не более 10 мг/л, что позволяет утилизировать маточный раствор в штатном режиме переработки жидкого радиоактивного отхода среднего уровня активности (Патент РФ №2 638 543 С1, опубл. 14.12.2017).

Предлагаемый способ был проверен на установке из 10 малогабаритных смесительно-отстойных экстракторов с пульсационным перемешиванием и транспортировкой потоков. Входные потоки (экстракт и реэкстрагент) при необходимости перед входом на установку подогревались в теплообменниках.

Для всех экспериментов был использован 30% раствор в изопаре М и приготовлен экстракт с содержанием урана 90 г/л и азотной кислоты 8 г/л. Экстракт содержал 10 мг/л дибутилфосфорной кислоты.

В предварительных экспериментах было установлено, что стационарный режим в блоке при выбранных расходах потоков устанавливается за ~ 4 часа.

Пример 1. Состав реэкстрагирующего раствора: глицин 1,5 моль/л, азотная кислота 3,2 г/л, расход 69 мл/ч. Расход экстракта 200 мл/час.

Стационарный режим блока контролировался по постоянству состава реэкстракта.

В табл. 1 приведены данные по содержанию урана и азотной кислоты в равновесных фазах на ступенях блока. Вход экстракта - в ступень 1, вход реэкстрагента - в ступень 10.

Расход реэкстракта превышал расход реэкстрагента на 9,3%, расход оборотного экстрагента был ниже расхода экстракта на 9%. Эти изменения связаны с массопереносом урана в водную фазу.

Пример 2. Состав реэкстрагирующего раствора: глицин 2,5 моль/л, азотная кислота 3,2 г/л, расход 54 мл/ч. Остальные условия эксперимента без изменений.

Данные по содержанию урана и азотной кислоты в равновесных фазах на ступенях блока приведены в табл. 2.

Пример 3. Состав реэкстрагирующего раствора такой же, как в примере 1, расход 54,8 мл/ч. Состав и расход экстракта те же, что и в примерах 1 и 2.

Входные потоки (экстракт и реэкстрагент) перед подачей в блок подогревались до 50°С.

Данные по содержанию урана и азотной кислоты в равновесных фазах на ступенях блока приведены в табл. 3.

Пример 4. Состав реэкстрагирующего раствора такой же, как в примере 2, расход 40,4 мл/ч. Температура рабочей среды -50°С.

Состав и расход экстракта без изменений.

Данные по содержанию урана и азотной кислоты в равновесных фазах на ступенях блока приведены в табл. 4.

Из реэкстракта (пример 4) был осажден пероксид урана, маточный раствор был откорректирован по составу, после чего направлен на операцию разрушения глицина с использованием цирконий-платинового катализатора (см. ссылку 4). Остаточное содержание глицина составило 8,5 мг/л.

Сопоставление технологических показателей способа-прототипа и предлагаемого способа демонстрирует существенные преимущества предлагаемого способа:

- содержание урана в оборотном экстрагенте в предлагаемом способе в ~ 20 раз ниже, что снимает проблему переработки содовых регенератов;

- в процессе реэкстракции по предлагаемому способу в блоке реэкстракции формируется безурановая зона, что существенно повышает технологическую устойчивость процесса (сдвиг уранового фронта при флуктуациях расходов потоков и возврат безурановой зоны к стационарному состоянию при стабилизации процесса);

- При осадительной переработке реэкстрактов урана, полученных по предлагаемому способу, маточные растворы утилизируются в штатном режиме переработки жидких радиоактивных отходов среднего уровня активности.

Похожие патенты RU2793956C1

название год авторы номер документа
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА 2020
  • Волк Владимир Иванович
  • Алексеенко Владимир Николаевич
  • Меркулов Игорь Александрович
  • Обедин Андрей Викторович
  • Подрезова Любовь Николаевна
  • Рубисов Владимир Николаевич
RU2727140C1
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ УРАНСОДЕРЖАЩИХ РАСТВОРОВ 1999
  • Балахонов В.Г.
  • Дорда Ф.А.
  • Загуменнов В.С.
  • Комиссаров В.Г.
  • Короткевич В.М.
  • Лазарчук В.В.
  • Ледовских А.К.
  • Портнягина Э.О.
RU2170964C1
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ УРАНСОДЕРЖАЩИХ РАСТВОРОВ 1997
  • Хандорин Г.П.
  • Короткевич В.М.
  • Дорда Ф.А.
  • Дедов Н.В.
  • Деменко А.А.
  • Белов В.А.
  • Голощапов Р.Г.
  • Загуменнов В.С.
RU2114469C1
Способ непрерывного экстракционного противоточного концентрирования элементов 1988
  • Волк Владимир Иванович
  • Никифоров Александр Сергеевич
  • Захаркин Борис Степанович
  • Веселов Сергей Николаевич
  • Карелин Александр Иванович
  • Белов Вячеслав Аркадьевич
  • Короткевич Владимир Михайлович
  • Дорда Феликс Анатольевич
  • Шкляр Леонид Исаакович
  • Шпунт Лев Борисович
SU1588428A1
СПОСОБ РАЗДЕЛЕНИЯ УРАНА И ПЛУТОНИЯ В ЭКСТРАКЦИОННОЙ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА 2010
  • Волк Владимир Иванович
  • Веселов Сергей Николаевич
  • Двоеглазов Константин Николаевич
  • Жеребцов Александр Анатольевич
  • Зверев Дмитрий Владимирович
  • Кривицкий Юрий Григорьевич
  • Алексеенко Владимир Николаевич
  • Третьяков Александр Афанасьевич
RU2449393C2
Способ экстракционного концентрирования и очистки плутония 2018
  • Волк Владимир Иванович
  • Веселов Сергей Николаевич
  • Рубисов Владимир Николаевич
  • Машкин Александр Николаевич
  • Ворошилов Юрий Аркадьевич
RU2691132C1
СПОСОБ ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ ЦИРКОНИЯ И ГАФНИЯ 2012
  • Зильберман Борис Яковлевич
  • Кардаполов Александр Викторович
  • Копарулина Елена Семеновна
  • Лихачева Ольга Геннадьевна
  • Москаленко Олег Петрович
  • Свиридов Александр Михайлович
  • Старченко Вадим Александрович
  • Штуца Михаил Георгиевич
RU2521561C2
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННЫХ ТОРИЕВЫХ МАТЕРИАЛОВ 2001
  • Зильберман Б.Я.
  • Сытник Л.В.
  • Горский А.Г.
  • Боровиков Е.А.
RU2200993C2
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОАКТИВНЫХ ОТХОДОВ С ФРАКЦИОНИРОВАНИЕМ РАДИОНУКЛИДОВ 2019
  • Хаперская Анжелика Викторовна
  • Меркулов Игорь Александрович
  • Сеелев Игорь Николаевич
  • Алексеенко Владимир Николаевич
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Наумов Андрей Александрович
  • Камаева Елена Андреевна
  • Петров Юрий Юрьевич
  • Блажева Ирина Владимировна
RU2709826C1
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА АЭС 2014
  • Зильберман Борис Яковлевич
  • Голецкий Николай Дмитриевич
  • Федоров Юрий Степанович
  • Кудинов Александр Станиславович
  • Пузиков Егор Артурович
  • Кухарев Дмитрий Николаевич
  • Наумов Андрей Александрович
RU2574036C1

Реферат патента 2023 года ЭКСТРАКЦИОННЫЙ СПОСОБ ПЕРЕРАБОТКИ УРАНСОДЕРЖАЩИХ РАСТВОРОВ

Изобретение относится к экстракционной переработке урансодержащих растворов и может быть использовано в технологии переработки облученного ядерного топлива атомных электростанций, а также различных урансодержащих растворов, в том числе оборотных материалов. Способ переработки включает экстракцию урана из урансодержащих растворов органическим раствором трибутилфосфата в инертном разбавителе, промывку экстракта азотнокислым раствором. Реэкстракцию урана выполняют водным раствором 1,0-2,5 моль/л глицина и 0,03-0,07 моль/л азотной кислоты. Изобретение позволяет снизить потери урана с оборотным экстрагентом, повысить технологическую устойчивость процесса и возможность утилизации маточных растворов после осаждения урана из реэкстрактов. 1 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 793 956 C1

1. Способ переработки урансодержащих растворов, включающих экстракцию урана, промывку экстракта и реэкстракцию урана, отличающийся тем, что реэкстракцию урана осуществляют водным раствором 1,0-2,5 моль/л глицина и 0,03-0,07 моль/л азотной кислоты.

2. Способ по п. 1, отличающийся тем, что процесс реэкстракции проводят при температуре 25-60°С.

Документы, цитированные в отчете о поиске Патент 2023 года RU2793956C1

СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА 2020
  • Волк Владимир Иванович
  • Алексеенко Владимир Николаевич
  • Меркулов Игорь Александрович
  • Обедин Андрей Викторович
  • Подрезова Любовь Николаевна
  • Рубисов Владимир Николаевич
RU2727140C1
СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА 2008
  • Гаврилов Петр Михайлович
  • Ревенко Юрий Александрович
  • Бычков Сергей Иванович
  • Лапшин Борис Михайлович
  • Алексеенко Владимир Николаевич
RU2382425C1
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА (ВАРИАНТЫ) 2003
  • Зильберман Б.Я.
  • Сытник Л.В.
  • Горский А.Г.
  • Боровиков Е.А.
  • Ковригина Е.Н.
RU2249267C2
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА И ПОЛУЧЕНИЯ СМЕШАННОГО УРАН-ПЛУТОНИЕВОГО ОКСИДА 2007
  • Барон Паскаль
  • Динх Бинх
  • Массон Мишель
  • Дрэн Франсуа
  • Эмен Жан-Люк
RU2431896C2
WO 2006072729 A1, 13.07.2006.

RU 2 793 956 C1

Авторы

Алексеенко Владимир Николаевич

Волк Владимир Иванович

Рубисов Владимир Николаевич

Дьяченко Антон Сергеевич

Даты

2023-04-11Публикация

2022-04-20Подача