Изобретение относится к экстракционной переработке урансодержащих растворов и может быть использовано в технологии переработки облученного ядерного топлива атомных электростанций (преимущественно), а также различных урансодержащих растворов, в том числе оборотных материалов.
Во всех случаях экстракционный цикл переработки завершается операцией реэкстракции урана из органической фазы (раствор трибутилфосфата, ТБФ) в разбавителе) в водную фазу.
Реэкстракцию, как правило, осуществляют слабым (0,05-0,07 моль/л) раствором азотной кислоты при температуре ~ 60°С (Громов Б.В., Савельева В.И., Шевченко В.Б. Химическая технология облученного ядерного топлива. М. Энергоатомиздат, 1983, с. 351). Особенности изотермы распределения урана в указанных условиях не позволяют получить реэкстракты с содержанием урана более 100 г/л, что требует значительных энергозатрат на упаривание реэкстракта.
Существенно более высокие концентрации урана достигаются в процессах реэкстракции урана с применением реагентных реэкстрагентов. Наиболее концентрированные реэкстракты, более 300 г/л по урану, получены при использовании в качестве реэкстрагента растворов карбамида, 60-400 г/л, в определенных условиях, регламентирующих взаимосвязь таких параметров процесса реэкстракции как температура, содержание урана в экстракте, содержание азотной кислоты в экстракте, содержание карбамида в реэкстрагенте и соотношение потоков органической и водной фаз (Патент РФ №2 170 964 С1, опубл. 20.07.2001).
По поставленной задаче и технической сущности этот способ наиболее близок к заявляемому и выбран в качестве прототипа.
Анализ способа-прототипа выявил ряд его существенных недостатков.
1. Даже при проведении процесса реэкстракции в регламентных параметрах остаточное содержание урана в оборотном экстрагенте составляет в среднем 20 мг/л. На операции содовой регенерации происходит концентрирование урана в 10-12 раз, что создает проблемы при утилизации регенерата.
2. Незначительные отклонения от регламентных параметров, неизбежные в реальных производственных условиях, приводят (цитируем описание изобретения к патенту) «… к резкому увеличению содержания урана в оборотном экстрагенте, уменьшению содержания урана в реэкстрактах, увеличению содержания урана в карбонатных промывных растворах, что может привести к образованию в них осадков карбонатных соединений урана».
3. При осаждении полиуранатов аммония из карбамидных реэкстрактов, а это единственный вариант их переработки (Патент РФ №2 114 469 С1, опубл. 27.06.1998), образуется маточный раствор с общим солесодержанием (карбамид + нитрат аммония) до 500 г/л. Технология утилизации такого продукта отсутствует.
Техническим результатом предлагаемого изобретения является снижение потерь урана с оборотным экстрагентом, повышение технологической устойчивости процесса и возможность утилизации маточных растворов после осаждения урана из реэкстрактов.
Результат достигается в способе переработки урансодержащих растворов, включающем экстракцию урана, промывку экстракта и реэкстракцию урана, при этом реэкстракцию осуществляют водным раствором аминокислоты (глицина).
Реэкстрагирующий раствор содержит 1,0-2,5 моль/л глицина в зависимости от требуемой степени концентрирования урана.
Дополнительно реэкстрагирующий раствор содержит 0,03-0,07 моль/л азотной кислоты.
Реэкстракцию проводят при температуре 25-60°С.
Эффективность применения водных растворов глицина, NH2CH2COOH в качестве реэкстрагентов урана из трибутилфосфатных экстрактов определяется комплексообразованием уранила с карбоксильной группой и связыванием образующейся азотной кислоты аминогруппой молекулы глицина.
Ввод в реэкстрагирующий раствор малых количеств азотной кислоты препятствует появлению в оборотном экстрагенте урана, связанного с дибутилфосфорной кислотой, присутствующей в незначительных количествах в реальных растворах ТБФ.
Из глицинсодержащего реэкстракта осаждают пероксид урана или (при добавлении плутония) пероксид урана-плутония, глицин в маточном растворе разлагают до остаточного содержания не более 10 мг/л, что позволяет утилизировать маточный раствор в штатном режиме переработки жидкого радиоактивного отхода среднего уровня активности (Патент РФ №2 638 543 С1, опубл. 14.12.2017).
Предлагаемый способ был проверен на установке из 10 малогабаритных смесительно-отстойных экстракторов с пульсационным перемешиванием и транспортировкой потоков. Входные потоки (экстракт и реэкстрагент) при необходимости перед входом на установку подогревались в теплообменниках.
Для всех экспериментов был использован 30% раствор в изопаре М и приготовлен экстракт с содержанием урана 90 г/л и азотной кислоты 8 г/л. Экстракт содержал 10 мг/л дибутилфосфорной кислоты.
В предварительных экспериментах было установлено, что стационарный режим в блоке при выбранных расходах потоков устанавливается за ~ 4 часа.
Пример 1. Состав реэкстрагирующего раствора: глицин 1,5 моль/л, азотная кислота 3,2 г/л, расход 69 мл/ч. Расход экстракта 200 мл/час.
Стационарный режим блока контролировался по постоянству состава реэкстракта.
В табл. 1 приведены данные по содержанию урана и азотной кислоты в равновесных фазах на ступенях блока. Вход экстракта - в ступень 1, вход реэкстрагента - в ступень 10.
Расход реэкстракта превышал расход реэкстрагента на 9,3%, расход оборотного экстрагента был ниже расхода экстракта на 9%. Эти изменения связаны с массопереносом урана в водную фазу.
Пример 2. Состав реэкстрагирующего раствора: глицин 2,5 моль/л, азотная кислота 3,2 г/л, расход 54 мл/ч. Остальные условия эксперимента без изменений.
Данные по содержанию урана и азотной кислоты в равновесных фазах на ступенях блока приведены в табл. 2.
Пример 3. Состав реэкстрагирующего раствора такой же, как в примере 1, расход 54,8 мл/ч. Состав и расход экстракта те же, что и в примерах 1 и 2.
Входные потоки (экстракт и реэкстрагент) перед подачей в блок подогревались до 50°С.
Данные по содержанию урана и азотной кислоты в равновесных фазах на ступенях блока приведены в табл. 3.
Пример 4. Состав реэкстрагирующего раствора такой же, как в примере 2, расход 40,4 мл/ч. Температура рабочей среды -50°С.
Состав и расход экстракта без изменений.
Данные по содержанию урана и азотной кислоты в равновесных фазах на ступенях блока приведены в табл. 4.
Из реэкстракта (пример 4) был осажден пероксид урана, маточный раствор был откорректирован по составу, после чего направлен на операцию разрушения глицина с использованием цирконий-платинового катализатора (см. ссылку 4). Остаточное содержание глицина составило 8,5 мг/л.
Сопоставление технологических показателей способа-прототипа и предлагаемого способа демонстрирует существенные преимущества предлагаемого способа:
- содержание урана в оборотном экстрагенте в предлагаемом способе в ~ 20 раз ниже, что снимает проблему переработки содовых регенератов;
- в процессе реэкстракции по предлагаемому способу в блоке реэкстракции формируется безурановая зона, что существенно повышает технологическую устойчивость процесса (сдвиг уранового фронта при флуктуациях расходов потоков и возврат безурановой зоны к стационарному состоянию при стабилизации процесса);
- При осадительной переработке реэкстрактов урана, полученных по предлагаемому способу, маточные растворы утилизируются в штатном режиме переработки жидких радиоактивных отходов среднего уровня активности.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА | 2020 |
|
RU2727140C1 |
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ УРАНСОДЕРЖАЩИХ РАСТВОРОВ | 1999 |
|
RU2170964C1 |
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ УРАНСОДЕРЖАЩИХ РАСТВОРОВ | 1997 |
|
RU2114469C1 |
Способ непрерывного экстракционного противоточного концентрирования элементов | 1988 |
|
SU1588428A1 |
СПОСОБ РАЗДЕЛЕНИЯ УРАНА И ПЛУТОНИЯ В ЭКСТРАКЦИОННОЙ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА | 2010 |
|
RU2449393C2 |
Способ экстракционного концентрирования и очистки плутония | 2018 |
|
RU2691132C1 |
СПОСОБ ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ ЦИРКОНИЯ И ГАФНИЯ | 2012 |
|
RU2521561C2 |
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННЫХ ТОРИЕВЫХ МАТЕРИАЛОВ | 2001 |
|
RU2200993C2 |
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОАКТИВНЫХ ОТХОДОВ С ФРАКЦИОНИРОВАНИЕМ РАДИОНУКЛИДОВ | 2019 |
|
RU2709826C1 |
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА АЭС | 2014 |
|
RU2574036C1 |
Изобретение относится к экстракционной переработке урансодержащих растворов и может быть использовано в технологии переработки облученного ядерного топлива атомных электростанций, а также различных урансодержащих растворов, в том числе оборотных материалов. Способ переработки включает экстракцию урана из урансодержащих растворов органическим раствором трибутилфосфата в инертном разбавителе, промывку экстракта азотнокислым раствором. Реэкстракцию урана выполняют водным раствором 1,0-2,5 моль/л глицина и 0,03-0,07 моль/л азотной кислоты. Изобретение позволяет снизить потери урана с оборотным экстрагентом, повысить технологическую устойчивость процесса и возможность утилизации маточных растворов после осаждения урана из реэкстрактов. 1 з.п. ф-лы, 4 табл.
1. Способ переработки урансодержащих растворов, включающих экстракцию урана, промывку экстракта и реэкстракцию урана, отличающийся тем, что реэкстракцию урана осуществляют водным раствором 1,0-2,5 моль/л глицина и 0,03-0,07 моль/л азотной кислоты.
2. Способ по п. 1, отличающийся тем, что процесс реэкстракции проводят при температуре 25-60°С.
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА | 2020 |
|
RU2727140C1 |
СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА | 2008 |
|
RU2382425C1 |
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА (ВАРИАНТЫ) | 2003 |
|
RU2249267C2 |
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА И ПОЛУЧЕНИЯ СМЕШАННОГО УРАН-ПЛУТОНИЕВОГО ОКСИДА | 2007 |
|
RU2431896C2 |
WO 2006072729 A1, 13.07.2006. |
Авторы
Даты
2023-04-11—Публикация
2022-04-20—Подача