Способ лазерной обработки материалов в жидкой среде Российский патент 2019 года по МПК B23K26/146 B23K26/20 B23K26/36 

Описание патента на изобретение RU2692153C1

Изобретение относится к области лазерной обработки, в частности к способам для лазерной обработки материалов, находящихся под водой, и может быть использовано в машиностроении и в других отраслях народного хозяйства.

Известен способ и устройство для лазерной обработки крупногабаритных изделий (RU 2113956, В23К 26/08, 26/12, 1998 г.), которые могут быть использованы при разделке затонувших кораблей, отработавших свой ресурс ядерных реакторов и т.д., а также для сварки изделий различного назначения. Обработку ведут под водой с погружением в воду источника лазерного излучения. Удельный вес источника лазерного излучения уравновешивают с удельным весом воды. Устройство имеет автономный привод перемещения вдоль траектории обработки. Специальное устройство создает разрежение внутри себя. При этом в случае сварки изделий устройство, создающее разрежение, выполнено единой конструкцией с технологическим лазером и раздельно с ним шарнирным узлом. В случае проведения операций разделки технологический лазер выполнен раздельно с устройством и находится по другую сторону от него относительно стенки разделываемого изделия. В процессе работы технологический лазер и отделенное от него стенкой изделия устройство всегда расположены напротив друг друга и синхронно перемещаются вдоль траектории реза.

Недостатком этого устройства, имеющего возможность обрабатывать объекты, находящиеся в воде за счет создания зон разрежения является то, что для создания зон разрежения требуется принятие мер по герметизации, что технически трудно реализовать на глубинах от 1000 м, а также связано с громоздкостью устройства и камеры и сложностью автоматизации.

Наиболее близким является способ и устройство лазерной обработки материалов (WO 2017017142, В23К 26/06, 26/064, 26/14, 2017 г.) предназначенный для обработки заготовок лазерным излучением в струе жидкости, включающий формирование лазерного луча в струе жидкости и одновременную подачу их в зону обработки посредством устройства для лазерной обработки. Лазерное излучение, мало поглощаемое жидкой средой, фокусируется в плоскости выходного отверстия для «соединения» струи жидкости и лазерного луча, и струя жидкости выступает в роли оптического волновода для лазерного излучения (показатель преломления жидкости превышает показатель преломления внешней (газовой) среды.

Недостатками этого способа и устройства для обработки материалов в жидких средах являются то, что из-за равенства показателей преломления внешней среды (морской) и показателя преломления воды подающей струи, обеспечивающей подвод излучения в зону обработки, струя воды не может быть волноводом в водной внешней среде, и как следствие в водной среде этот способ и устройство будет неработоспособно.

Задачей изобретения, является разработка способа для проведения технологических операций, например, резки, сварки, наклепа металлических и иных конструкций в жидкой среде в широком диапазоне давления и температуры внешней среды, в том числе на глубине.

Техническим результатом является возможность обработки лазерным излучением материалов в жидких средах, прозрачных для лазерного излучения, в широком диапазоне давления и температуры внешней среды.

Технический результат достигается в способе лазерной обработки материалов в жидкой среде, включающем формирование лазерного луча в струе жидкости и одновременную подачу их в зону обработки посредством устройства для лазерной обработки, состоящего из генератора лазерного излучения, выполненного с возможностью работы в частотном режиме, оптического элемента, гидравлической камеры с окном для ввода лазерного луча из оптического элемента, устройства подачи жидкости в гидравлическую камеру с выходным отверстием для вывода лазерного луча из гидравлической камеры в струе жидкости, причем предварительно жидкость подвергают фильтрации, термостабилизации с последующим нагнетанием ее в гидравлическую камеру, в выходном отверстии которой установлена форсунка, причем в зоне обработки создают и поддерживают пониженное давление с помощью системы, расположенной между гидравлической камерой и местом лазерной обработки, образующей замкнутый контур, которая, выполнена с возможностью циркуляции потока жидкости через форсунки, попарно установленные по ее торцам на входе для подачи жидкости из внешней среды и выходе для вывода жидкости из нее.

В предлагаемом способе реализована возможность доставки излучения к обрабатываемому материалу струей жидкости без использования эффекта полного внутреннего отражения между ней и окружающей средой за счет формирования тепловой линзы, обеспечивающей увеличение плотности мощности лазерного излучения, достаточного для дальнейшего возникновения нелинейного эффекта Керра (дополнительного увеличения показателя преломления) и последующего канализирования данного лазерного луча в струе жидкости, которая формируется на выходе из гидравлической камеры форсункой, коаксиально совмещенной с лазерным излучением. Для поддержания термо-оптических свойств подающей струи предлагается подавать жидкость в гидравлическую камеру из узла фильтрации, термостабилизации и нагнетания жидкости, дополнительно обеспечивающего возможность обработки материалов в широком диапазоне давления и температур внешней среды. Вышеизложенные решения позволяют обрабатывать материалы в жидких средах. Дополнительно, в данном устройстве для обеспечения режима возгонки в условиях высокого давления внешней среды реализована возможность снижения давления в зоне воздействия лазерного излучения за счет системы создания и поддержания пониженного давления в зоне обработки.

Сущность изобретения поясняется чертежами

На фиг. 1 представлена схема предлагаемого устройства

На фиг. 2 изображена система создания и поддержания пониженного давления в зоне обработки

Устройство для лазерной обработки материалов в жидкой среде (Фиг. 1), состоит из генератора лазерного излучения 1, выполненного с возможностью работы в частотном режиме, оптического элемента, например, телескопа 2, гидравлической камеры 3 с окном 4 для ввода лазерного луча из телескопа. Устройство подачи жидкости в гидравлическую камеру 3 выполнено в виде узла 5 фильтрации, термостабилизации и нагнетания жидкости, причем в узле 5 установлены фильтры, термостабилизаторы и насос для нагнетания жидкости (на Фиг. 1 не показаны).

В выходном отверстии гидравлической камеры 3 установлена форсунка 6 для вывода лазерного луча из гидравлической камеры 3 в струе жидкости.

Между гидравлической камерой 3 и местом лазерной обработки материала 10 расположена система 7 создания и поддержания пониженного давления в зоне обработки, образующая замкнутый контур, выполненная с возможностью циркуляции потока жидкости через форсунки 8, 9, попарно установленные по ее торцам на входе для подачи жидкости из внешней среды (форсунки 9) и выходе для вывода жидкости из нее (форсунки 8). Величина пониженного давления в зоне обработки материала обеспечивается скоростью потока, который создается насосом 11 и форсунками 8 и 9 (Фиг. 2).

Устройство работает следующим образом:

В зависимости от конкретного обрабатываемого материала выбирается температура фазового перехода (плавление-возгонка) и в зависимости от нее выбирается необходимое количество теплоты, которое должно быть сообщено материалу (мощность лазерного излучения) и внешнее давление, создаваемое ламинарными потоками жидкости, создаваемыми форсунками 8, 9.

Количество теплоты, подводимое к поверхности обрабатываемого материала, обеспечивается потоком плотности мощности, который формируется следующим образом: лазерное излучение, формируемое в генераторе лазерного излучения 1 поступает в телескоп 2, где путем подбора фокусного расстояния поджимается в коллинеарный пучок до пороговой плотности мощности, необходимой для формирования керровской линзы и через входное окно 4 попадает в гидравлическую камеру 3. В гидравлической камере 3, заполненной специально подготовленной жидкостью, например водой (отфильтрованной от механических частиц и охлажденной до температур ниже 4°С в узле 5) формируется фокусирующая линза, оптическая ось которой коаксиально совмещена с осью форсунки 6. Лазерное излучение после самофокусировки в воде, заполняющей гидравлическую камеру 3, канализируется в струе воды, сформированной форсункой 6 со скоростью истечения, удовлетворяющей тепловому балансу на 4°С. Далее, струя воды с лазерным излучением распространяется в системе 7, образующей замкнутый контур, который отделяет ее от внешней жидкой среды и работает как камера для создания пониженного давления, и поступает в зону обработки материала 10, например конструкционного. После воздействия струя воды, несущая лазерное излучение, вытесняясь, уносит продукты разрушения в принимающую форсунку 8 совместно с обтекающим зону воздействием потоком внешней среды, например морской, создаваемым форсункой 9.

Пример конкретного исполнения

Для реализации способа резки металлических изделий (на примере вырезки отверстий в образцах из сплавов АД0, АД31 и 08х18н10, толщиной 2 мм) был использован генератор лазерного излучения - одномодовый YAG:Nd лазер ЛТИ-103 с длиной волны излучения 1064 нм, работающий в импульсно-периодическом режиме с модуляцией добротности с максимальной средней мощностью излучения 8 Вт при частоте модуляции 1,5-3 кГц.

Лазерный луч заводился в нелинейную среду, представляющую из себя водорастворимые кристаллы DKDP или LiIO3, ориентированные по направлению синхронизма для генерации второй гармоники излучения с длиной волны 1064 мкм. Эффективность перестройки лазерного излучения во вторую гармонику составляла 30-40%. Затем излучение второй гармоники с длиной волны 532 нм, заводилось в телескоп, где лазерный луч поджимался до диаметра 3-4 мм, после чего через окно поступал в гидравлическую камеру, куда нагнеталась специально подготовленная очищенная вода при температуре 4°С. Увеличение мощности лазерного излучения производилось путем увеличения тока на дуговую лампу накачки до порогового значения, при котором лазерный луч испытывал явление самофокусировки и канализирования, после чего через выводную форсунку соосно со струей воды поступал к обрабатываемой поверхности металлических образцов, по поверхности которых распространялись ламинарные потоки воды.

В результате были получены сквозные отверстия в исследуемых образцах, диаметр отверстий составлял от 50 до 100 мкм. Эксперимент проводился при давлениях окружающей среды от 1 до 10 атм.

Похожие патенты RU2692153C1

название год авторы номер документа
Устройство для лазерной обработки материалов в жидкой среде 2018
  • Перцев Андрей Анатольевич
  • Конюхов Михаил Владимирович
  • Щербаков Константин Александрович
RU2685306C1
СПОСОБ И УСТРОЙСТВО ФОРМИРОВАНИЯ ПРЕЦИЗИОННЫХ ОТВЕРСТИЙ В ОПТИЧЕСКИ ПРОЗРАЧНОЙ ПЛЕНКЕ СВЕРХКОРОТКИМ ИМПУЛЬСОМ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2013
  • Вартапетов Сергей Каренович
  • Обидин Алексей Захарович
  • Ганин Даниил Валентинович
RU2551043C1
МЯГКАЯ ДИАФРАГМА ДЛЯ ЛАЗЕРОВ 1998
  • Сенатский Ю.В.(Ru)
  • Виноградский Л.М.(Ru)
  • Зубарев И.Г.(Ru)
  • Мизин В.М.(Ru)
  • Пятахин М.В.(Ru)
  • Уеда Кен-Ичи
RU2157034C2
СПОСОБ И УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ПЛОТНОГО ТУМАНА ИЗ МИКРОМЕТРОВЫХ И СУБМИКРОМЕТРОВЫХ КАПЕЛЬ 2000
  • Шмидт Мартин
  • Сюблемонтье Оливье
RU2242291C2
МЯГКАЯ ДИАФРАГМА ДЛЯ ЛАЗЕРОВ 1999
  • Сенатский Ю.В.
RU2163386C2
СПОСОБ ЛАЗЕРНОГО ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ В ОПТИЧЕСКИ ПРОЗРАЧНОЙ ТВЕРДОЙ СРЕДЕ 2003
  • Иночкин Михаил Владимирович
  • Портной Ефим Лазаревич
  • Волков Александр Сергеевич
RU2295506C2
УСТРОЙСТВО ДЛЯ ВОЗБУЖДЕНИЯ АКУСТИЧЕСКОГО ИЗЛУЧЕНИЯ 2000
  • Артамонов А.С.
RU2188084C2
СПОСОБ ПЕЧАТИ И УСТРОЙСТВО ДЛЯ ПОКРЫТИЯ ВЫБРАННЫХ УЧАСТКОВ ПОДЛОЖКИ ПЛЁНКОЙ 2016
  • Ланда Бенцион
  • Крассильников Антон
  • Наглер Михаэль
  • Адлер Ариэль
  • Рубин Бен Хаим Нир
  • Акнин Офер
  • Йогев Ронен
RU2706446C2
ЛАЗЕРНЫЙ ЦЕНТРАТОР ДЛЯ РЕНТГЕНОВСКОГО ИЗЛУЧАТЕЛЯ 2008
  • Кеткович Андрей Анатольевич
  • Маклашевский Виктор Яковлевич
RU2370000C1
Способ лазерной обработки материала (варианты) 2015
  • Мышковец Виктор Николаевич
  • Максименко Александр Васильевич
  • Полторан Игорь Леонидович
  • Баевич Георгий Александрович
  • Усов Петр Петрович
  • Юркевич Сергей Николаевич
  • Лапич Иосиф Викторович
RU2624568C2

Иллюстрации к изобретению RU 2 692 153 C1

Реферат патента 2019 года Способ лазерной обработки материалов в жидкой среде

Изобретение относится к способу лазерной обработки материалов в жидкой среде. Формирование лазерного луча осуществляют в струе жидкости с одновременной подачей их в зону обработки посредством устройства для лазерной обработки. Устройство состоит из генератора лазерного излучения, выполненного с возможностью работы в частотном режиме, оптического элемента, гидравлической камеры с окном для ввода лазерного луча из оптического элемента, устройства подачи жидкости в гидравлическую камеру с выходным отверстием для вывода лазерного луча из гидравлической камеры в струе жидкости. Предварительно жидкость подвергают фильтрации, термостабилизации с последующим нагнетанием ее в гидравлическую камеру. В выходном отверстии камеры установлена форсунка. В зоне обработки создают и поддерживают пониженное давление с помощью системы, образующей замкнутый контур и которая выполнена с возможностью циркуляции потока жидкости через форсунки, попарно установленные по торцам на входе для подачи жидкости из внешней среды и выходе для вывода жидкости из камеры. Техническим результатом является возможность обработки лазерным излучением материалов в жидких средах, прозрачных для лазерного излучения, в широком диапазоне давления и температуры внешней среды. 2 ил., 1 пр.

Формула изобретения RU 2 692 153 C1

Способ лазерной обработки материалов в жидкой среде, включающий формирование лазерного луча в струе жидкости и одновременную подачу струи жидкости и лазерного луча в зону обработки, отличающийся тем, что используют устройство для лазерной обработки, состоящее из генератора лазерного излучения, выполненного с возможностью работы в частотном режиме, оптического элемента, гидравлической камеры с окном для ввода лазерного луча из оптического элемента, форсунки, установленной в выходном отверстии камеры, устройства подачи жидкости в гидравлическую камеру, выполненного в виде узла фильтрации, термостабилизации и нагнетания жидкости в упомянутую камеру, и системы создания и поддержания пониженного давления в зоне обработки, которая выполнена с возможностью циркуляции потока жидкости через форсунки, попарно установленные по ее торцам на входе для подачи жидкости из внешней среды и выходе для вывода жидкости из нее, и которую располагают между гидравлической камерой и местом лазерной обработки, при этом предварительно в упомянутом узле жидкость фильтруют и охлаждают и подают в гидравлическую камеру, в которой формируют керровскую линзу, оптическую ось которой коаксиально совмещают с осью форсунки в ее выходном отверстии, затем лазерное излучение подают в гидравлическую камеру для самофокусировки, через форсунку со струей жидкости в систему создания и поддержания пониженного давления и затем в зону обработки.

Документы, цитированные в отчете о поиске Патент 2019 года RU2692153C1

WO 2017017142 A1, 02.02.2017
Способ лучевой сварки 1989
  • Зуев Игорь Васильевич
  • Галкин Александер Георгиевич
  • Новокрещенов Виктор Васильевич
  • Эстрова Елена Николаевна
SU1703334A1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОЙ ПОВЕРХНОСТИ СТАЛЕЙ МЕТОДОМ ЛАЗЕРНО-ПЛАЗМЕННОЙ ОБРАБОТКИ 2010
  • Плихунов Виталий Валентинович
  • Блинков Владимир Викторович
  • Гаврилов Александр Сергеевич
  • Кондратюк Дмитрий Иванович
  • Шлесберг Илья Семенович
RU2447012C1
ЛАЗЕРНАЯ МИКРООБРАБОТКА И СПОСОБЫ ЕЕ ОСУЩЕСТВЛЕНИЯ 2004
  • Отис Чарльз
  • Кавари Мехрган
  • Поллард Джеффри Р.
  • Хьют Марк К.
RU2365477C2
Приспособление для раскружаливания сводов 1928
  • Добровольский К.И.
SU9724A1
US 20110042362 A1, 24.02.2011
US 20170326688 A1, 16.11.2017
US 6720522 B2, 13.04.2004.

RU 2 692 153 C1

Авторы

Перцев Андрей Анатольевич

Конюхов Михаил Владимирович

Щербаков Константин Александрович

Даты

2019-06-21Публикация

2018-06-09Подача