Изобретение относится к лазерной технике, в частности к установкам для лазерной обработки материалов, находящихся под водой, и может быть использовано в машиностроении и в других отраслях народного хозяйства.
Известно устройство и способ газолазерной резки металлических материалов (RU 2089365, В23К 26/14,1997 г.). Устройство для газолазерной резки металлических материалов снабжено емкостью с кольцевым каналом для подачи воды в зону резания, выполненным в виде полого цилиндра, охватывающего насадку с соплом, причем диаметры сопла и кольцевого канала совпадают. Способ включает подачу под давлением технологического газа в корпус резака соосно с лазерным лучом, в зону резания дополнительно подают воду при расходе 0,01-4,0 мл/мм реза.
Недостатками данного устройства является то, что оно предназначено только для резки металлов и предусматривает подачу воды в зону резки, расход которой при этом составляет 0,01-4,0 мл/мм реза. Такой расход воды обеспечивает повышение толщины резки при одной и той же мощности. При увеличении расхода воды, как указывают авторы, качество резки стальных деталей ухудшается.
Известно устройство и способ газолазерной резки композиционных материалов (RU 2471600, В23К 26/14, 26/38, 2013 г.). Устройство содержит корпус лазерного резка с фокусирующей линзой, штуцер для подачи технологического газа, сопловую насадку и цилиндрическую емкость с кольцевым каналом для подачи жидкой среды. Кольцевой канал имеет полую конусную насадку, внутренняя поверхность которой выполнена в виде спиральных канавок, закручивающих поток.
Недостатками данного устройства является то, что для лазерной обработки материалов, находящихся в воде на значительной глубине он не может быть использован, так как для создания газовых струй необходимо газовое оборудование с высокими показателями расхода и давления, значительно превосходящего давление на глубине проводимых операций.
Известно устройство и способ лазерной обработки крупногабаритных изделий (RU 2113956, В23К 26/08, 26/12, 1998 г.), которые могут быть использованы при разделке затонувших кораблей, отработавших свой ресурс ядерных реакторов и т.д., а также для сварки изделий различного назначения. Обработку ведут под водой с погружением в воду источника лазерного излучения. Удельный вес источника лазерного излучения уравновешивают с удельным весом воды. Устройство имеет автономный привод перемещения вдоль траектории обработки. Специальное устройство создает разрежение внутри себя. При этом в случае сварки изделий устройство, создающее разрежение, выполнено единой конструкцией с технологическим лазером и раздельно с ним шарнирным узлом. В случае проведения операций разделки технологический лазер выполнен раздельно с устройством и находится по другую сторону от него относительно стенки разделываемого изделия. В процессе работы технологический лазер и отделенное от него стенкой изделия устройство всегда расположены напротив друг друга и синхронно перемещаются вдоль траектории реза.
Недостатком этого устройства, имеющего возможность обрабатывать объекты, находящиеся в воде за счет создания зон разрежения является то, что для создания зон разрежения требуется принятие мер по герметизации, что технически трудно реализовать на глубинах от 1000 м, а также связано с громоздкостью устройства и камеры и сложностью автоматизации.
Наиболее близким является устройство (WO 9532834, В23К 26/06, 26/064, 26/14, 1995 г.), предназначенное для обработки заготовок лазерным излучением в струе жидкости. Устройство состоит из генератора лазерного излучения, гидравлической камеры высокого давления для создания струи жидкости, которая создается с помощью специальной насадки (сопла), окна для ввода лазерного излучения в гидравлическую камеру. Лазерное излучение, мало поглощаемое жидкой средой, фокусируется в плоскости выходного отверстия для «соединения» струи жидкости и лазерного луча, а струя жидкости выступает в роли волновода для лазерного излучения (показатель преломления жидкости превышает показатель преломления внешней (газовой) среды.
Недостатками этого устройства для обработки материалов в жидких средах, например, морской является то, что из-за равенства показателей преломления внешней среды (морской) и показателя преломления струи воды, обеспечивающей подвод излучения в зону обработки, струя воды не может быть волноводом в водной окружающей среде, и как следствие в водной среде это устройство будет неработоспособно.
Задачей изобретения, является разработка устройства для проведения технологических операций, например, резки, сварки, наклепа металлических и иных конструкций в жидкой среде при любом давлении окружающей среды, в том числе на глубине.
Техническим результатом является возможность обработки лазерным излучением материалов в жидких средах, прозрачных для лазерного излучения, в широком диапазоне давления и температуры внешней среды.
Технический результат достигается в устройстве для лазерной обработки материалов в жидкой среде, состоящем из генератора лазерного излучения, выполненного с возможностью работы в частотном режиме, оптического элемента, гидравлической камеры с окном для ввода лазерного излучения из оптического элемента, устройства подачи жидкости в гидравлическую камеру с выходным отверстием для вывода лазерного луча из гидравлической камеры в струе жидкости, причем устройство подачи жидкости выполнено в виде узла фильтрации, термостабилизации и нагнетания жидкости в гидравлическую камеру, в выходном отверстии которой установлена форсунка, причем между гидравлической камерой и местом лазерной обработки расположена система создания и поддержания пониженного давления в зоне обработки, образующая замкнутый контур, выполненная с возможностью циркуляции потока жидкости через форсунки, попарно установленные по ее торцам на входе для подачи жидкости из внешней среды и выходе для вывода жидкости из нее.
В предлагаемом устройстве реализована возможность доставки излучения к обрабатываемому материалу струей жидкости без использования эффекта полного внутреннего отражения между ней и окружающей средой за счет формирования тепловой линзы, обеспечивающей увеличение плотности мощности лазерного излучения, достаточного для дальнейшего возникновения нелинейного эффекта Керра (дополнительного увеличения показателя преломления) и последующего канализирования данного лазерного луча в струе жидкости, которая формируется на выходе из гидравлической камеры форсункой, коаксиально совмещенной с лазерным излучением. Для поддержания термооптических свойств подающей струи предлагается подавать жидкость в гидравлическую камеру из узла фильтрации, термостабилизации и нагнетания жидкости, дополнительно обеспечивающего возможность обработки материалов в широком диапазоне давления и температур внешней среды. Вышеизложенные решения позволяют обрабатывать материалы в жидких средах. Дополнительно, в данном устройстве для обеспечения режима возгонки в условиях высокого давления внешней среды реализована возможность снижения давления в зоне воздействия лазерного излучения за счет системы создания и поддержания пониженного давления в зоне обработки.
Сущность изобретения поясняется чертежами.
На фиг. 1 представлена схема предлагаемого устройства.
На фиг. 2 изображена система создания и поддержания пониженного давления в зоне обработки.
Устройство для лазерной обработки материалов в жидкой среде (Фиг. 1) состоит из генератора лазерного излучения 1, выполненного с возможностью работы в частотном режиме, оптического элемента, например, телескопа 2, гидравлической камеры 3 с окном 4 для ввода лазерного луча из телескопа. Устройство подачи жидкости в гидравлическую камеру 3 выполнено в виде узла 5 фильтрации, термостабилизации и нагнетания жидкости, причем в узле 5 установлены фильтры, термостабилизаторы и насос для нагнетания жидкости (на Фиг. 1 не показаны).
В выходном отверстии гидравлической камеры 3 установлена форсунка 6 для вывода лазерного луча из гидравлической камеры 3 в струе жидкости.
Между гидравлической камерой 3 и местом лазерной обработки материала 10 расположена система 7 создания и поддержания пониженного давления в зоне обработки, образующая замкнутый контур, выполненная с возможностью циркуляции потока жидкости через форсунки 8, 9, попарно установленные по ее торцам на входе для подачи жидкости из внешней среды (форсунки 9) и выходе для вывода жидкости из нее (форсунки 8). Величина пониженного давления в зоне обработки материала обеспечивается скоростью потока, который создается насосом 11 и форсунками 8 и 9 (Фиг. 2).
Устройство работает следующим образом:
В зависимости от конкретного обрабатываемого материала выбирается температура фазового перехода (плавление-возгонка) и в зависимости от нее выбирается необходимое количество теплоты, которое должно быть сообщено материалу (мощность лазерного излучения) и внешнее давление, создаваемое ламинарными потоками жидкости, создаваемыми форсунками 8, 9.
Количество теплоты, подводимое к поверхности обрабатываемого материала, обеспечивается потоком плотности мощности, который формируется следующим образом: лазерное излучение, формируемое в генераторе лазерного излучения 1 поступает в телескоп 2, где путем подбора фокусного расстояния поджимается в коллинеарный пучок до пороговой плотности мощности, необходимой для формирования керровской линзы и через входное окно 4 попадает в гидравлическую камеру 3. В гидравлической камере 3, заполненной специально подготовленной жидкостью, например водой (отфильтрованной от механических частиц и охлажденной до температур ниже 4°С в узле 5) формируется фокусирующая линза, оптическая ось которой коаксиально совмещена с осью форсунки 6. Лазерное излучение после самофокусировки в воде, заполняющей гидравлическую камеру 3, канализируется в струе воды, сформированной форсункой 6 со скоростью истечения, удовлетворяющей тепловому балансу на 4°С. Далее, струя воды с лазерным излучением распространяется в системе 7, образующей замкнутый контур, который отделяет ее от внешней жидкой среды и работает как камера для создания пониженного давления, и поступает в зону обработки материала 10, например конструкционного. После воздействия струя воды, несущая лазерное излучение, вытесняясь, уносит продукты разрушения в принимающую форсунку 8 совместно с обтекающим зону воздействием потоком внешней среды, например морской, создаваемым форсункой 9.
Пример конкретного исполнения
Для реализации способа резки металлических изделий (на примере вырезки отверстий в образцах из сплавов АД0, АД31 и 08х18н10, толщиной 2 мм) был использован генератор лазерного излучения - одномодовый YAG:Nd лазер ЛТИ-103 с длиной волны излучения 1064 нм, работающий в импульсно-периодическом режиме с модуляцией добротности с максимальной средней мощностью излучения 8 Вт при частоте модуляции 1,5-3 кГц.
Лазерный луч заводился в нелинейную среду, представляющую из себя водорастворимые кристаллы DKDP или LiIO3, ориентированные по направлению синхронизма для генерации второй гармоники излучения с длиной волны 1064 мкм. Эффективность перестройки лазерного излучения во вторую гармонику составляла 30-40%. Затем излучение второй гармоники с длиной волны 532 нм, заводилось в телескоп, где лазерный луч поджимался до диаметра 3-4 мм, после чего через окно поступал в гидравлическую камеру, куда нагнеталась специально подготовленная очищенная вода при температуре 4°С. Увеличение мощности лазерного излучения производилось путем увеличения тока на дуговую лампу накачки до порогового значения, при котором лазерный луч испытывал явление самофокусировки и канализирования, после чего через выводную форсунку соосно со струей воды поступал к обрабатываемой поверхности металлических образцов, по поверхности которых распространялись ламинарные потоки воды.
В результате были получены сквозные отверстия в исследуемых образцах, диаметр отверстий составлял от 50 до 100 мкм. Эксперимент проводился при давлениях окружающей среды от 1 до 10 атм.
Таким образом, разработано устройство для проведения технологических операций, например, резки, сварки, наклепа металлических и иных конструкций в жидкой среде в широком диапазоне давления и температуры внешней среды, в том числе на глубине.
название | год | авторы | номер документа |
---|---|---|---|
Способ лазерной обработки материалов в жидкой среде | 2018 |
|
RU2692153C1 |
СПОСОБ ГАЗОЛАЗЕРНОЙ РЕЗКИ КРУПНОГАБАРИТНЫХ ДЕТАЛЕЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2471600C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ВОДОРОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1989 |
|
SU1743085A3 |
СПОСОБ ГАЗОЛАЗЕРНОЙ РЕЗКИ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ | 2008 |
|
RU2382693C1 |
Способ ультразвуковой газолазерной резки листового металла и устройство ультразвуковой газолазерной резки листового металла (Варианты) | 2017 |
|
RU2670629C9 |
СПОСОБ ГАЗОЛАЗЕРНОЙ РЕЗКИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 1995 |
|
RU2089365C1 |
СПОСОБ ГАЗОЛАЗЕРНОЙ РЕЗКИ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ГАЗОЛАЗЕРНОЙ РЕЗКИ | 2011 |
|
RU2466842C1 |
Способ лазерной резки тонколистового углепластика | 2018 |
|
RU2689346C1 |
Автоматизированная установка для газолазерной резки материалов | 1981 |
|
SU958060A1 |
УСТРОЙСТВО ДЛЯ ЛАЗЕРНОЙ ОБРАБОТКИ | 1997 |
|
RU2127179C1 |
Изобретение относится к устройству для лазерной обработки материалов, находящихся под водой, и может быть использовано в машиностроении и в других отраслях народного хозяйства. Устройство состоит из генератора лазерного излучения, выполненного с возможностью работы в частотном режиме, оптического элемента, гидравлической камеры с окном для ввода лазерного луча из оптического элемента, устройства подачи жидкости в гидравлическую камеру с выходным отверстием для вывода лазерного луча из гидравлической камеры в струе жидкости и системы создания и поддержания пониженного давления в зоне обработки. Устройство подачи жидкости выполнено в виде узла фильтрации, термостабилизации и нагнетания жидкости в гидравлическую камеру, в выходном отверстии которой установлена форсунка. Между гидравлической камерой и местом лазерной обработки расположена система создания и поддержания пониженного давления в зоне обработки, образующая замкнутый контур. Система выполнена с возможностью циркуляции потока жидкости через форсунки, попарно установленные по ее торцам на входе для подачи жидкости из внешней среды и выходе для вывода жидкости из нее. Техническим результатом является возможность обработки лазерным излучением материалов в жидких средах, прозрачных для лазерного излучения, в широком диапазоне давления и температуры внешней среды. 2 ил.
Устройство для лазерной обработки материалов в жидкой среде, содержащее генератор лазерного излучения, выполненный с возможностью работы в частотном режиме, оптический элемент, гидравлическую камеру с окном для ввода лазерного луча из оптического элемента и устройство подачи жидкости в гидравлическую камеру с выходным отверстием для вывода лазерного луча из гидравлической камеры в струе жидкости, отличающееся тем, что оно снабжено системой создания и поддержания пониженного давления в зоне обработки, выполненной с возможностью образования замкнутого контура и циркуляции потока жидкости через форсунки, попарно установленные по ее торцам на входе для подачи жидкости из внешней среды и выходе для вывода из нее жидкости, а устройство подачи жидкости в гидравлическую камеру выполнено в виде узла фильтрации, термостабилизации и нагнетания жидкости в гидравлическую камеру, в выходном отверстии которой установлена форсунка, причем система создания и поддержания пониженного давления в зоне обработки расположена между гидравлической камерой и местом лазерной обработки.
WO 1995032834 A, 07.12.1995 | |||
Способ лучевой сварки | 1989 |
|
SU1703334A1 |
Приспособление для раскружаливания сводов | 1928 |
|
SU9724A1 |
US 20110042362 A1, 24.02.2011 | |||
US 6720522 B2, 13.04.2004. |
Авторы
Даты
2019-04-17—Публикация
2018-06-09—Подача