Калибровочное устройство Российский патент 2019 года по МПК F16L55/28 F16L101/30 G01B7/34 G01B7/13 

Описание патента на изобретение RU2693039C1

Изобретение относится к области неразрушающего контроля технического состояния трубопроводов путем пропуска внутритрубного устройства.

Из уровня техники известен внутритрубный дефектоскоп (патент RU 15518, МПК G01B 7/28, G01B 7/13, опубл. 20.10.2000), который содержит чувствительный рычаг, установленный на корпусе дефектоскопа, прижимаемый к внутренней поверхности трубопровода, свободный конец указанного рычага включает в себя съемную часть, контактирующую с внутренней поверхностью трубопровода, на корпусе дефектоскопа установлен датчик угла поворота указанного рычага, средства измерений, обработки и хранения получаемых данных измерений, источник питания, подключенный к средствам измерений, обработки и хранения данных.

Из уровня техники известен внутритрубный профилемер (патент RU 2164661, МПК G01B 5/28, G01B 7/34, G01B 7/28, F17D 5/00, G01B 7/30, опубл. 27.03.2001), включающий пояс чувствительных рычагов, установленных на корпусе по периметру вокруг главной оси трубопровода и прижимаемых к внутренней поверхности трубопровода, с регулярными промежутками между чувствительными рычагами, и, по крайней мере, один пояс датчиков угла поворота, установленных по периметру корпуса вокруг главной оси трубопровода, каждый из чувствительных рычагов кинематически связан с соответствующим ему датчиком угла поворота, при этом ось чувствительного рычага, соединяющая ось вращения рычага с ближайшей точкой касания рычага с внутренней поверхностью трубопровода номинального диаметра в плоскости, проходящей через главную ось трубопровода, образует угол 60-80° с главной осью трубопровода.

Известен внутритрубный многоканальный профилемер (патент RU 2529820, МПК G01B7/28, опубл. 27.09.2014), который состоит, по крайней мере, из одной секции, состоящей из корпуса, на котором установлены опорные диски, колесные блоки подвески, манжеты и два пояса измерительных подпружиненных рычагов таким образом, что полностью перекрывают всю длину окружности внутреннего диаметра трубопровода, а на конце каждого из измерительных подпружиненных рычагов закреплена полиуретановая накладка с залитыми в ней износостойкими шипами, при этом полиуретановая накладка измерительного подпружиненного рычага прижата к внутренней поверхности трубопровода.

Наиболее близким аналогом к заявленному устройству является шаблон внутритрубный (патент RU 2509254, МПК F16L 55/26, опубл. 10.03.2014), в котором вторая секция включает трубчатый корпус с установленными на нем с противоположных его концов тарельчатыми пружинами и спайдером и размещенным в его полости блоком измерения проходного сечения трубопровода. Спайдер имеет фланец, который является его несущей деталью и на котором при помощи кронштейнов, которые не показаны, прикреплены рычаги. На свободных концах рычагов установлены ролики с резиновыми кольцами по их периметру. Каждый из рычагов посредством шарнирного соединения соединен с диском. Спайдер содержит пружины, соединенные с диском для обеспечения прижатия роликов к стенкам трубопровода. Блок для измерения проходного сечения трубопровода включает сообщенный с рычагами спайдера толкатель, выполненный с возможностью взаимодействия с установленным в полости трубчатого корпуса второй секции поршнем, выполненным с возможностью возвратно-поступательного перемещения в полости трубчатого корпуса для измерения величины его перемещения и определения по этому перемещению величины проходного сечения трубопровода.

Общим недостатком перечисленных выше устройств является изнашиваемость контактных поверхностей измерительных рычагов, соприкасающихся с внутренней поверхностью трубопровода, что приводит к необходимости проведения частой замены изношенных частей измерительных рычагов. Частая замена изношенных частей рычагов влечет за собой увеличение себестоимости работ по внутритрубной диагностике трубопроводов. Контакт с внутренней поверхностью трубопровода быстро изнашиваемых контактных поверхностей измерительных рычагов приводит к получению недостоверной диагностической информации. Все перечисленные выше устройства имеют подпружиненную конструкцию измерительного рычага, контактирующего с внутренней поверхностью трубопровода. Подпружиненная конструкция измерительного рычага при встрече с геометрическими особенностями трубопровода при движении внутритрубного устройства в трубопроводе может вызвать инерционный отскок, что также приводить к получению недостоверной информации и даже к потере диагностической информации на отдельных участках трубопровода.

Под геометрическими особенностями трубопровода следует понимать сужения внутреннего проходного диаметра трубопровода, образовавшиеся из-за деформации трубопровода (вмятина); сужения внутреннего проходного диаметра трубопровода из-за выступающих во внутреннюю полость трубопровода конструктивных элементов трубопровода, крутоизгибные отводы трубопровода, а также сужения внутреннего проходного диаметра трубопровода из-за асфальтосмолопарафиновых отложений на внутренней стенке трубопровода.

Технический результат настоящего изобретения заключается в увеличении срока эксплуатации комплектующих и повышении точности данных, получаемых калибровочным устройством по результатам внутритрубной диагностики.

Технический результат достигается тем, что создано калибровочное устройство, которое включает корпус, на котором установлены центритрующие манжеты, измерительная система и одометр и ческа я система, при этом корпус содержит герметичную колбу с электронным оборудованием записи и хранения информации, а измерительная система состоит из измерительных рычагов, каждый измерительный рычаг включает кронштейн, ось кронштейна, рычаг, накладку, датчик угловых перемещений, поводок, пружину, ось датчика угловых перемещений, электрический кабель, при этом рычаг установлен на кронштейне и способен поворачиваться вокруг оси кронштейна в пределах диапазона, ограниченного упором на кронштейне, на рычаг установлена накладка, датчик угловых перемещений установлен на кронштейн и через электрический кабель соединен с электронным оборудованием записи и хранения информации, а ось датчика угловых перемещений через поводок пружиной соединена с рычагом, при этом каждый измерительный рычаг установлен на корпусе независимо от других измерительных рычагов, которые совместно образуют окружность, диаметр, размер которого составляет 85% от наружного диаметра центрирующих манжет.

Создание калибровочного устройства с заявленной настоящим изобретением конструкцией измерительной системы обеспечивает калибровочному устройству величину проходного сечения геометрических особенностей трубопровода до 60% от номинального внутреннего диаметра трубопровода и менее, а также обеспечивается проходимость крутоизогнутых отводов трубопровода размером 1,5 диаметра от номинального внутреннего диаметра трубопровода при норме изгиба трубопровода 5 диаметров от номинального внутреннего диаметра трубопровода. Отсутствие постоянного контакта накладок рычагов с внутренней поверхностью трубопровода повышает срок эксплуатации калибровочного устройства без замены комплектующих, повышение срока износа накладок обеспечивает повышение точности данных, получаемых в результате внутритрубной диагностики.

Изобретение поясняется чертежами, где на фиг. 1 изображена секция калибровочного устройства, фиг. 2 изображена конструкция измерительного рычага измерительной системы.

На фиг. 1 и 2 приняты следующие обозначения:

1. Корпус, содержащий герметичную колбу с электронным оборудованием записи и хранения информации (герметичная колба с электронным оборудованием записи и хранения информации не показана),

2. Центрирующая манжета,

3. Измерительная система с измерительными рычагами,

4. Одометрическая система,

5. Кронштейн,

6. Рычаг,

7. Накладка,

8. Пружина,

9. Датчик угловых перемещений,

10. Ось кронштейна,

11. Электрический кабель,

12. Поводок,

13. Ось датчика угловых перемещений.

Калибровочное устройство состоит их корпуса 1 (фиг. 1), на котором размещены центритрующие манжеты 2 (фиг. 1), при чем центритрующие манжеты 2 (фиг. 1) установлены в передней и задней частях калибровочного устройства. Также центритрующие манжеты 2 (фиг. 1) в количестве не менее двух установлены равномерно на корпусе 1 (фиг. 1). В задней части калибровочного устройства между двумя центритрующими манжетами 2 (фиг. 1) размещена измерительная система 3 (фиг. 1). В конце конструкции калибровочного устройства размещена одометрическая система 4 (фиг. 1). В состав измерительной системы 3 (фиг. 1) входят измерительные рычаги, каждый из которых состоит из кронштейна 5 (фиг. 2), являющегося базовой деталью, на котором подвижным соединением с помощью оси 10 (фиг. 2) установлен рычаг 6 (фиг. 2), который способен поворачивается вокруг оси 10 (фиг. 2) в пределах диапазона, ограниченного упором на кронштейне 5 (фиг. 2). На рычаг 6 (фиг. 2) установлена накладка 7 (фиг. 2).

На кронштейне 5 (фиг. 2) установлен датчик 9 (фиг. 2). Ось 13 (фиг. 2) датчика 9 (фиг. 2) через поводок 12 (фиг. 2) пружиной 8 (фиг. 2) соединена с рычагом 6 (фиг. 2). К датчику 9 (фиг. 2) подсоединен электрический кабель 11 (фиг. 2).

Заявленное калибровочное устройство работает следующим образом:

Калибровочное устройство перемещается внутри трубопровода вместе с перекачивающимся продуктом. Центритрующие манжеты 2 (фиг. 1) обеспечивают положение калибровочного устройства, соосное с осью трубопровода.

При этом конструкция калибровочного устройства выполнена так, что контактная часть измерительной системы 3 (фиг. 1) - накладки 7 (фиг. 2) рычагов 6 (фиг. 2), расположена на диаметре, который составляет 85% от диаметра центрирующих манжет. Накладки 7 (фиг. 2) рычагов 6 (фиг. 2) вступают в контакт с внутренней поверхностью трубопровода только при наезде калибровочного устройства на геометрическую особенность трубопровода, превышающую 15% номинального внутреннего диаметра трубопровода (проходное сечение - 85% номинального внутреннего диаметра трубопровода). Когда накладки 7 (фиг. 2) рычагов 6 (фиг. 2) измерительной системы 3 (фиг. 1) вступают в контакт с внутренней стенкой трубопровода, измерительная система 3 (фиг. 1) фиксирует геометрическую особенность трубопровода, а одометрическая система 4 (фиг. 1) - дистанцию, на которой геометрическая особенность трубопровода зафиксирована.

Отклонение положения рычага 6 (фиг. 2) фиксирует датчик угловых перемещений 9 (фиг. 2), который осью 13 (фиг. 2) через поводок 12 (фиг. 2) пружиной 8 соединен с рычагом 6, при этом к датчику угловых перемещений 9 (фиг. 2) подключен электрический кабель 11 (фиг. 2). Датчик угловых перемещений 9 (фиг. 2) формирует сигнал, который через кабель 11 (фиг. 2) передается в электронное оборудование записи и хранения информации, которое установлено в герметичной колбе корпуса 1 (фиг. 1).

Конструкция измерительной системы 3 (фиг. 1) обеспечивает калибровочному устройству величину проходного сечения геометрических особенностей трубопровода до 60% от номинального внутреннего диаметра трубопровода и менее, а также обеспечивается проходимость крутоизогнутых отводов трубопровода размером 1,5 диаметра от номинального внутреннего диаметра трубопровода при норме изгиба трубопровода 5 диаметров от номинального внутреннего диаметра трубопровода.

Похожие патенты RU2693039C1

название год авторы номер документа
Устройство для измерения внутреннего профиля трубопровода 2018
  • Глинкин Дмитрий Юрьевич
  • Чернышов Олег Григорьевич
  • Тимофеев Сергей Сергеевич
  • Будаев Николай Алексеевич
RU2690973C1
ВНУТРИТРУБНЫЙ МНОГОКАНАЛЬНЫЙ ПРОФИЛЕМЕР 2012
  • Мирошник Александр Дмитриевич
  • Гурин Сергей Федорович
  • Елисеев Владимир Николаевич
  • Белкин Владимир Александрович
  • Соломин Сергей Алексеевич
RU2529820C2
ШАБЛОН ВНУТРИТРУБНЫЙ 2012
  • Лисин Юрий Викторович
  • Мирошник Александр Дмитриевич
  • Чернышов Олег Григорьевич
  • Савин Виктор Иванович
  • Поляков Владимир Александрович
  • Янин Андрей Алексеевич
RU2509254C2
СИСТЕМА ИЗМЕРИТЕЛЬНАЯ МАГНИТНАЯ ВНУТРИТРУБНАЯ 2021
  • Глинкин Дмитрий Юрьевич
  • Чернышов Олег Григорьевич
  • Крючков Вячеслав Алексеевич
  • Канунников Александр Анатольевич
  • Галишников Михаил Сергеевич
RU2759875C1
Носитель датчиков дефектоскопа внутритрубного ультразвукового 2018
  • Глинкин Дмитрий Юрьевич
  • Чернышов Олег Григорьевич
  • Тимофеев Сергей Сергеевич
  • Галишников Михаил Сергеевич
RU2692868C1
Многоканальная измерительная система для измерения геометрического профиля трубопровода 2021
  • Глинкин Дмитрий Юрьевич
  • Кирьянов Максим Юрьевич
RU2772550C1
ВНУТРИТРУБНЫЙ СНАРЯД С ИЗМЕРИТЕЛЬНЫМ ДИСКОМ (ВАРИАНТЫ) 2016
  • Аксенов Дмитрий Викторович
  • Щербаков Владимир Иванович
RU2632064C2
Носитель датчиков внутритрубного ультразвукового дефектоскопа 2018
  • Глинкин Дмитрий Юрьевич
  • Чернышов Олег Григорьевич
  • Соломин Сергей Алексеевич
  • Трейеров Сергей Владимирович
  • Янин Андрей Алексеевич
RU2692869C1
ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП С ИЗМЕНЯЕМОЙ СКОРОСТЬЮ ДВИЖЕНИЯ 2008
  • Чеботаревский Юрий Викторович
  • Синев Андрей Иванович
  • Плотников Петр Колестратович
  • Никишин Владимир Борисович
  • Фомин Антон Игоревич
RU2361198C1
Устройство для сканирования геометрии трубы 2021
  • Сунгатуллин Искандер Равилевич
  • Кирханов Арсен Артурович
  • Джураев Рустам Фатхуддинович
  • Наумкин Евгений Анатольевич
  • Кузеев Искандер Рустемович
RU2790884C2

Иллюстрации к изобретению RU 2 693 039 C1

Реферат патента 2019 года Калибровочное устройство

Изобретение относится к области неразрушающего контроля технического состояния трубопроводов путем пропуска внутритрубного устройства. Технический результат заключается в увеличении срока эксплуатации комплектующих и повышении точности данных. Калибровочное устройство включает корпус, на котором установлены центрирующие манжеты, измерительная система и одометрическая система, при этом корпус содержит герметичную колбу с электронным оборудованием записи и хранения информации, а измерительная система состоит из измерительных рычагов, каждый измерительный рычаг включает кронштейн, ось кронштейна, рычаг, накладку, датчик угловых перемещений, поводок, пружину, ось датчика угловых перемещений, электрический кабель, при этом рычаг установлен на кронштейне и способен поворачиваться вокруг оси кронштейна в пределах диапазона, на рычаг установлена накладка, датчик угловых перемещений установлен на кронштейн и через электрический кабель соединен с электронным оборудованием записи и хранения информации, а ось датчика угловых перемещений через поводок пружиной соединена с рычагом, при этом каждый измерительный рычаг установлен на корпусе независимо от других измерительных рычагов, которые совместно образуют окружность, диаметр которой составляет 85% от наружного диаметра центрирующих манжет. 2 ил.

Формула изобретения RU 2 693 039 C1

Калибровочное устройство, включающее корпус, на котором установлены центритрующие манжеты, измерительная система и одометрическая система, отличающееся тем, что корпус содержит герметичную колбу с электронным оборудованием записи и хранения информации, а измерительная система состоит из измерительных рычагов, каждый измерительный рычаг включает кронштейн, ось кронштейна, рычаг, накладку, датчик угловых перемещений, поводок, пружину, ось датчика угловых перемещений, электрический кабель, при этом рычаг установлен на кронштейне и способен поворачиваться вокруг оси кронштейна в пределах диапазона, ограниченного упором на кронштейне, на рычаг установлена накладка, датчик угловых перемещений установлен на кронштейн и через электрический кабель соединен с электронным оборудованием записи и хранения информации, а ось датчика угловых перемещений через поводок пружиной соединена с рычагом, при этом каждый измерительный рычаг установлен на корпусе независимо от других измерительных рычагов, которые совместно образуют окружность, диаметр, которой составляет 85% от наружного диаметра центрирующих манжет.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693039C1

Лобофрезерный станок для обработки по росту, например плоских стереотипов 1959
  • Дорофеев В.Ф.
  • Евстигнеев М.А.
SU126120A1
СПОСОБ ОБСЛЕДОВАНИЯ ПРОФИЛЯ ТРУБОПРОВОДОВ (ВАРИАНТЫ) 2001
  • Коленцов С.И.
  • Тягунов А.В.
  • Чукавин С.П.
  • Зеленов Е.Ю.
  • Гореликов А.И.
  • Банин А.Ю.
  • Якунинский В.В.
  • Тягунов И.В.
RU2200301C1
KR 101720585 B1, 29.03.2017
Устройство для иземерения среднего индикаторного давления в цилиндре двигателя внутреннего сгорания 1986
  • Магнитский Юрий Александрович
  • Голованов Альберт Владимирович
  • Варфоломеев Андрей Анатольевич
  • Бельдий Николай Владимирович
SU1362979A1
EP 3239585 A1, 01.11.2017.

RU 2 693 039 C1

Авторы

Эрмиш Сергей Валерьевич

Глинкин Дмитрий Юрьевич

Чернышов Олег Григорьевич

Тимофеев Сергей Сергеевич

Даты

2019-07-01Публикация

2018-11-26Подача