СПОСОБ ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ Российский патент 2019 года по МПК C22B59/00 C01F17/00 C22B3/38 

Описание патента на изобретение RU2693714C1

Изобретение относится к способам экстракционного разделения редкоземельных элементов (далее РЗЭ) из нейтральных или слабокислых растворов в присутствии высаливателя нейтральными экстрагентами.

В литературе и промышленной практике известно разделение РЗЭ цериевой подгруппы 100% трибутилфосфатом, далее - ТБФ, при противоточной экстракции из слабокислых растворов в присутствии высаливателя и в азотнокислых растворах с концентрацией кислоты 6-8 мол/л (Г.В. Корпусов, Е.Н. Патрушева «Экстракционные методы разделения редкоземельных элементов»). Процесс разделения проводят в многоступенчатых каскадах экстракторов - отстойников ящичного типа. Основными недостатками процесса является невысокая производительность каскадов разделения, большая загрузка реагентов, высокие потери экстрагента - 100% ТБФ за счет высокой вязкости экстракта (насыщенного экстрагента) и низкой скорости расслаивания водноорганической эмульсии в растворах РЗЭ с плотностью более 1,5 г/см3. Захват эмульгированного экстрагента выходящей из каскада водной фазой сопровождается ухудшением качества продукции, поэтому для его отделения устанавливают дополнительное оборудование - двухфазные отстойники с временем пребывания не менее 5-6 часов.

Известен способ экстракционного разделения РЗЭ, включающий экстракцию 100% ТБФ из исходного раствора, содержащего нитраты редкоземельных элементов и высаливатель, промывку и реэкстракцию подкисленной водой. При этом реэкстракт по отношению к исходному раствору делят на два потока в соотношении исходный раствор : первый поток : второй поток, равном 1:(0,3-0,4):(0,5-1,0), после чего первый поток упаривают до концентрации 280-320 г/л и направляют на промывку органической фазы, а второй поток обрабатывают гидроксидом аммония или карбонатом аммония и фильтрацией отделяют гидроксиды редкоземельных элементов, а фильтрат направляют на приготовление исходного раствора (Патент RU 2596245, 10.09.2016 г).

Основной недостаток способа - использование на стадии первой и второй реэкстракции слишком малого расхода реэкстрагирующего раствора (азотной кислоты), что приводит к получению высококонцентрированных по солевому составу растворов и затрудняет разделение фаз на стадиях 1-ой и 2-ой реэкстракции. Так, расчетный режим получения оксида неодима (99,9%) из дидима (75% неодима+25% празеодима) при сбросе в рафинат 1% неодима равен O:В:Пром. воде: Реэкст=16,4:1:4,9:9. Т.е. подавая на первую реэкстракцию 0,3-0,4 доли от исходного раствора мы имеем соотношение фаз на первой реэкстракции O:Реэк (1)=16,4:0,3, соответственно на второй реэкстракции О:Реэк (2)=16,4:0,5, что нереально выдержать в любом типе экстракционного каскада. Для качественного разделения редкоземельных элементов необходимы большие затраты на реагенты.

Наиболее близким является способ экстракционного разделения РЗЭ (патент RU 2058938, 27.04.1996), по которому процесс разделения проводят в противоточном каскаде, содержащем экстракционную и промывную части и узел реэкстракции 6-8,5 М азотной кислотой. На 1-6 ступень со стороны входа экстрагента подают раствор высаливателя из группы нитратов аммония, лития, магния, алюминия в количестве, обеспечивающем их концентрацию от 2 г - экв/л до насыщения. Отбор рафината осуществляют со ступени, следующей за ступенью ввода высаливателя. Со стороны выхода рафината или со стороны выхода экстракта поочередно подключают заполненные исходным раствором емкости, из которых осуществляют отбор продуктов.

Основной недостаток способа - использование на стадии реэкстракции концентрированной азотной кислоты, которая при дальнейшем переделе реэкстракта необратимо нейтрализуется раствором аммиака или карбоната аммония, что приводит к большим затратам на реагенты. При этом невозможно провести упарку реэкстракта для получения промывного раствора, так как одновременно происходит разложение азотной кислоты, сопровождающееся образованием трудно утилизируемых нитрозных газов. Еще одним недостатком процесса является невысокая производительность каскадов разделения при большой загрузке реагентов, высокие потери экстрагента - 100% ТБФ за счет высокой вязкости и низкой скорости расслаивания в растворах РЗЭ с плотностью более 1,5 г/см3, а также дополнительные затраты на оборудование.

Техническим результатом заявляемого изобретения является снижение расхода реагентов на производство индивидуальных РЗЭ, в том числе за счет снижения потерь экстрагента, вызванное повышением эффективности разделения водноорганической эмульсии, а также снижением затрат на оборудование при повышении чистоты (качества) полученных продуктов.

Положительный эффект достигается за счет того, что оборотный экстрагент подают во вторую ступень экстракционной части каскада и выводят непрерывно после промывки и реэкстракции из последней ступени каскада. Исходный раствор подают в последнюю ступень экстракционной части каскада совместно с рафинатом промывки противотоком органической фазе и выводят из первой ступени каскада в виде рафината. Промывной раствор подают в последнюю ступень, а реэкстрагирующий - в предпоследнюю ступень соответствующей части каскада противотоком органической фазе. Готовую продукцию (реэкстракт) выводят из первой ступени реэкстракционной части каскада, работающей как сепаратор без ввода органической фазы.

В качестве многоступенчатого экстракционного каскада разделения используют каскад центробежных экстракторов с числом оборота ротора на ступени не менее 1500 об/мин.

В качестве экстрагента используют 75% смесь нейтрального фосфорорганического экстрагента в углеводородном разбавителе, не содержащем ароматические примеси.

Эффективность разделения (производительность каскада разделения), снижение расхода реагентов, сокращение количества используемого оборудования, а также повышение чистоты готовой продукции достигается введением в каскад на стадию процесса концевых ступеней, работающих как сепараторы при выведении «тяжелой» фазы, например рафината экстракции или реэкстракта, или «легкой» фазы-оборотного экстрагента, а также составом используемого экстрагента и реэкстрагирующего раствора.

Рассмотрим прототип.

Пример 1

Для разделения использовали карбонаты РЗЭ производства ОАО «Соликамский магниевый завод». Разделение редкоземельного концентрата проводили по линии Pr/Се с использованием 100% ТБФ после предварительного отделения церия электроокислением и экстракцией. Состав концентрата для разделения приведен в таблице 1. Конечными продуктами разделения являются рафинат, содержащий лантан и остаток неокисленного церия, и реэкстракт от разделения, содержащий дидим и среднетяжелую группу РЗЭ. Требования к продуктам от разделения представлены в таблице 2 (расчетные).

В соответствии с расчетным режимом работы число ступеней в каскаде составило 83, в том числе на экстракции - 29 ст., промывке - 43, реэкстракции - 11. Расчет проводился из условия, что коэффициент разделения (β) по линии Pr/Се равен 1,6. Схема подачи рабочих растворов в каскад разделения по линии Pr/Се по способу-прототипу приведена на Фиг. 1.

Каскад для разделения, состоящий из центробежных экстракторов модели ЭЦ-10ФА, заполняли последовательно рабочими растворами и экстрагентом - 100% ТБФ. В качестве исходного раствора использовали раствор РЗЭ состава №1 с суммарной концентрацией по сумме оксидов 350 г/л, содержащий 0,4 моль/л HNO3, при запуске в качестве промывного использовали исходный раствор, в качестве реэкстрагирующего - раствор 7М HNO3. В качестве высаливателя использовали раствор нитрата аммония концентрации 6 г-экв/л. Расход рабочих растворов составил; мл/час: Орг:Исх:Пром:Реэкст=2100:200:755:1460.

Подача исходного раствора проводилась в 29-ую ступень противотоком экстрагенту и выводилась в виде рафината из первой ступени, экстрагент-100% ТБФ подавали в первую ступень, далее противотоком водной фазе экстрагент продвигался по каскаду и выводился из 83 ступени в сборник. Промывной раствор подавали в 72 ступень, он противотоком экстрагенту продвигался по каскаду, в 29 ступени объединялся с исходным раствором и выводился с рафинатом экстракции из первой ступени. После выхода экстрагента из последней (83) ступени каскад проработал еще 12 часов, причем, после 3-х часов работы каскада на промывку подавался раствор, полученный из реэкстракта путем осаждения из него карбонатов РЗЭ с последующим его растворением в азотной кислоте до содержания РЗО-350 г/л и 0,4 моль/л HNO3.

После выхода каскада на равновесие были отобраны пробы рафината и реэкстракта, которые были проанализированы на содержание индивидуальных РЗЭ. Состав выходных продуктов приведен в таблице 3.

Как показали результаты анализа, полученные продукты разделения в основном соответствуют расчетному составу, однако содержание фосфора, определяющее содержание захваченного экстрагента в водном продукционном растворе, составляет 0,15%, что соответствует 1,7 г экстрагента на 100 г продукта. Для снижения содержания фосфора в продукционных растворах необходимо установление двухфазных отстойников со временем пребывания около 5-6 часов.

Для получения промывной воды из реэкстракта требуется его нейтрализация аммиаком и осаждение карбонатов с последующим их растворением в азотной кислоте и получением раствора для промывки экстракта состава 350 г/л РЗО и ~25 г/л (0,4М) азотной кислоты. В таблице 4 представлены результаты расчета стоимости реагентов на приготовление промывного раствора для каскада разделения за 1 час работы по способу-прототипу из которой видно, что затраты на реагенты при реализации разделения по способу-прототипу составят около 75 рублей/час работы каскада из условия текущих цен.

Пример 2 -заявляемый способ

Проверка технологии разделения РЗЭ по заявляемому способу проводилась на концентрате РЗЭ того же состава в каскаде центробежных экстракторов модели ЭЦ-10ФА. Каскад был рассчитан на получение аналогичной продукции, как и в способе - прототипе. Схема обвязки каскада приведена на Фиг. 2 (Схема подачи рабочих растворов в каскад разделения по линии Pr/Се по заявляемому способу). В качестве многоступенчатого экстракционного каскада разделения использовался каскад центробежных экстракторов с числом оборота ротора на ступени не менее 1500 об/мин. Экстрагент - 75% ТБФ в УВР (без ароматических примесей) подавался на вторую ступень разделительного каскада, а рафинат экстракции выводился из первой ступени.

Промывной раствор подавался в 72 ступень промывной части каскада и после выхода из последней ступени промывной части объединялся с исходным раствором. Реэкстрагирующий раствор-0,4М азотной кислоты подавался в предпоследнюю 82 ступень каскада и выводился из 73 ступени (первой ступени реэкстракционной части), работающей как сепаратор без ввода органической фазы. В качестве исходного раствора использовали раствор РЗЭ состава, см. табл. 1, с суммарной концентрацией 350 г/л по сумме оксидов, содержащий 0,2 моль/л HNO3, в качестве промывного раствора - нейтрализованный и упаренный до 350 г/л по сумме оксидов реэкстракт.

Расход рабочих растворов составил; мл/час: Орг:Исх:Пром:Реэкст=3253:270:1010:1630. В качестве промывного раствора при запуске каскада был использован исходный раствор, далее после 3-х часов работы после вывода экстрагента из последней ступени, промывной раствор готовился из выходного реэкстракта после его нейтрализации и упаривания до 350 г/л по сумме РЗО. После выхода каскада на равновесие он проработал еще 12 часов, после чего были отобраны пробы рафината и реэкстракта, которые были проанализированы на содержание индивидуальных РЗЭ. Результаты анализов выводных продуктов и расход реагентов и электроэнергии на приготовление промывного раствора для работы каскада в течение 1 часа приведены в таблицах 5-6.

Как показывают полученные результаты, при работе каскада разделения в режиме заявляемого способа состав получаемой продукции значительно отличается от способа-прототипа как по примесям соседних РЗЭ, так и по количеству захваченного экстрагента с выводными растворами. Расход материалов на приготовление промывного раствора на 1 час работы разделительного каскада составляет 1,28 рубля, что в 58 раз меньше, чем при работе каскада разделения по способу-прототипу.

Как описано выше, для снижения количества захваченного экстрагента в промышленности ставят двухфазные отстойники со временем пребывания выводных растворов не менее 5-6 часов. В заявляемом способе их роль заменяют крайние ступени каскада, в которых отделение захваченного выходящей из каскада водной фазой экстрагента или водной фазы, захваченной выходящим экстрагентом, происходит за счет центробежных сил.

Таким образом, заявляемый способ позволяет снизить расход реагентов на обслуживание каскада разделения примерно в 60 раз, получать более чистые продукты как по соседним РЗЭ элементам, так и по фосфору, снизить количество используемого в технологии оборудования.

В таблице 7 приведены сравнительные результаты по экстракционному разделению РЗЭ по линии Pr/Се из слабокислых растворов с использованием в качестве экстрагента 100% ТБФ и 75% ТБФ в РЭД-3М

Из данных таблицы 7 видно, что производительность каскада разделения при работе по способу прототипу примерно в 1,4 раза меньше, чем по заявляемому способу. Это достигается за счет более высокой скорости разделения эмульсии 75% ТБФ в РЭД 3М - исходный раствор для разделения против эмульсии исходного раствора со 100% ТБФ.

Предлагаемый способ позволяет снизить расход реагентов на производство и сократить количество используемого оборудования при повышении чистоты полученных продуктов, а также повысить производительность разделительного экстракционного каскада за счет высокой эффективность разделения.

Похожие патенты RU2693714C1

название год авторы номер документа
СПОСОБ РАЗДЕЛЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ЭКСТРАКЦИЕЙ 2015
  • Вальков Александр Васильевич
  • Буйновский Александр Сергеевич
  • Русаков Игорь Юрьевич
  • Сачков Виктор Иванович
  • Ануфриева Александра Валерьевна
RU2596245C1
СПОСОБ ВЫДЕЛЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ РАСТВОРА СОЛЯНОКИСЛОТНОГО РАЗЛОЖЕНИЯ ЭВДИАЛИТОВОГО КОНЦЕНТРАТА 2005
  • Лебедев Валерий Николаевич
RU2288171C1
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ВЫСОКОАКТИВНОГО РАФИНАТА ПУРЕКС-ПРОЦЕССА ДЛЯ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА АЭС 2003
  • Зильберман Б.Я.
  • Фёдоров Ю.С.
  • Шмидт О.В.
  • Голецкий Н.Д.
  • Паленик Ю.В.
  • Сухарева С.Ю.
  • Кухарев Д.Н.
  • Пузиков Е.А.
  • Логунов М.В.
  • Машкин А.Н.
RU2249266C2
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОАКТИВНЫХ ОТХОДОВ С ФРАКЦИОНИРОВАНИЕМ РАДИОНУКЛИДОВ 2019
  • Хаперская Анжелика Викторовна
  • Меркулов Игорь Александрович
  • Сеелев Игорь Николаевич
  • Алексеенко Владимир Николаевич
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Наумов Андрей Александрович
  • Камаева Елена Андреевна
  • Петров Юрий Юрьевич
  • Блажева Ирина Владимировна
RU2709826C1
СПОСОБ ЭКСТРАКЦИОННОЙ ОЧИСТКИ НИТРАТНЫХ РАСТВОРОВ, СОДЕРЖАЩИХ РЗМ 2013
  • Ануфриева Александра Валерьевна
  • Буйновский Александр Сергеевич
  • Софронов Владимир Леонидович
  • Русаков Игорь Юрьевич
  • Макасеев Юрий Николаевич
  • Круглов Сергей Николаевич
  • Рябов Александр Сергеевич
  • Тинин Василий Владимирович
RU2517651C1
СПОСОБ ПЕРЕРАБОТКИ КОНЦЕНТРАТА РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ 2015
  • Осьмак Андрей Валерьевич
  • Николаева Ирина Ивановна
  • Горшкова Надежда Васильевна
RU2595672C1
СПОСОБ ПЕРЕРАБОТКИ АЗОТНОКИСЛЫХ РАСТВОРОВ, СОДЕРЖАЩИХ РЕДКОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ 2015
  • Бамбуров Виталий Григорьевич
  • Бекетов Аскольд Рафаилович
  • Евсеев Вячеслав Павлович
  • Поляков Евгений Валентинович
  • Литвинов Андрей Юрьевич
RU2598766C1
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ И РАЗДЕЛЕНИЯ ТПЭ И РЗЭ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ 1994
  • Зильберман Б.Я.
  • Инькова Е.Н.
  • Федоров Ю.С.
  • Шмидт О.В.
RU2106030C1
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ГИДРАТНО-ФОСФАТНЫХ ОСАДКОВ ПЕРЕРАБОТКИ АПАТИТА 2012
  • Вальков Александр Васильевич
RU2524966C2
ЭКСТРАКЦИОННАЯ СМЕСЬ ДЛЯ ИЗВЛЕЧЕНИЯ ТПЭ И РЗЭ ИЗ ВЫСОКОАКТИВНОГО РАФИНАТА ПЕРЕРАБОТКИ ОЯТ АЭС И СПОСОБ ЕЁ ПРИМЕНЕНИЯ (ВАРИАНТЫ) 2016
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Мясоедов Борис Федорович
  • Наумов Андрей Александрович
  • Романовский Валерий Николаевич
RU2623943C1

Иллюстрации к изобретению RU 2 693 714 C1

Реферат патента 2019 года СПОСОБ ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Изобретение относится к способам экстракционного разделения РЗЭ из нейтральных или слабокислых растворов в присутствии высаливателя нейтральными экстрагентами. Способ экстракционного разделения редкоземельных элементов из нейтральных или слабокислых растворов с помощью нейтральных фосфорорганических экстрагентов в противоточном многоступенчатом экстракционном каскаде, который состоит из экстракционной, промывной и реэкстракционной частей. Оборотный экстрагент подают во вторую ступень экстракционной части каскада и выводят непрерывно после промывки и реэкстракции из последней ступени каскада. При этом исходный раствор подают в последнюю ступень экстракционной части каскада совместно с рафинатом промывки противотоком органической фазе и выводят из первой ступени каскада в виде рафината. Промывной раствор подают в последнюю ступень, а реэкстрагирующий - в предпоследнюю ступень соответствующей части каскада противотоком органической фазе. Реэкстракт выводят из первой ступени реэкстракционной части каскада, работающей как сепаратор без ввода органической фазы. Способ позволяет снизить расход реагентов на производство индивидуальных РЗЭ, в том числе за счет снижения потерь экстрагента, вызванное повышением эффективности разделения водноорганической эмульсии при повышении чистоты полученных продуктов. 2 з.п. ф-лы, 2 ил., 7 табл., 2 пр.

Формула изобретения RU 2 693 714 C1

1. Способ экстракционного разделения редкоземельных элементов из нейтральных или слабокислых растворов с помощью нейтральных фосфорорганических экстрагентов, в противоточном многоступенчатом экстракционном каскаде, состоящем из экстракционной, промывной и реэкстракционной частей, отличающийся тем, что оборотный экстрагент подают во вторую ступень экстракционной части каскада и выводят непрерывно после промывки и реэкстракции из последней ступени каскада, при этом исходный раствор подают в последнюю ступень экстракционной части каскада совместно с рафинатом промывки противотоком органической фазе и выводят из первой ступени каскада в виде рафината, промывной раствор подают в последнюю ступень, а реэкстрагирующий - в предпоследнюю ступень соответствующей части каскада противотоком органической фазе, реэкстракт выводят из первой ступени реэкстракционной части каскада, работающей как сепаратор без ввода органической фазы.

2. Способ по п. 1, отличающийся тем, что в качестве многоступенчатого экстракционного каскада разделения используют каскад центробежных экстракторов с числом оборота ротора на ступени не менее 1500 об/мин.

3. Способ по п. 1, отличающийся тем, что в качестве экстрагента используют 75% смесь нейтрального фосфорорганического экстрагента в углеводородном разбавителе, не содержащем ароматические примеси.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693714C1

RU 2058938 C1, 27.04.1996
СПОСОБ ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ 2006
  • Федулова Таисия Тимофеевна
  • Селивановский Андрей Константинович
  • Косынкин Валерий Дмитриевич
  • Шаталов Валентин Васильевич
  • Анисимова Марина Юрьевна
  • Богатырев Владимир Александрович
  • Кардаполов Александр Викторович
  • Плотников Леонид Александрович
  • Смирнов Алексей Георгиевич
  • Филиппов Владимир Борисович
  • Черемных Геннадий Сергеевич
  • Штуца Михаил Георгиевич
RU2319666C2
СПОСОБ ВЫДЕЛЕНИЯ ГАДОЛИНИЯ ЭКСТРАКЦИЕЙ ФОСФОРОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ 2012
  • Вальков Александр Васильевич
RU2518619C2
СПОСОБ РАЗДЕЛЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ЭКСТРАКЦИЕЙ 2015
  • Вальков Александр Васильевич
  • Буйновский Александр Сергеевич
  • Русаков Игорь Юрьевич
  • Сачков Виктор Иванович
  • Ануфриева Александра Валерьевна
RU2596245C1
KR 20040055217 A, 26.06.2004
US 5639433 A, 17.06.1997.

RU 2 693 714 C1

Авторы

Галиева Жанетта Николаевна

Абрамов Алексей Михайлович

Соболь Юрий Борисович

Геря Владимир Олегович

Быданов Борис Александрович

Семенов Андрей Александрович

Солодовников Александр Вячеславович

Даты

2019-07-04Публикация

2018-12-25Подача