Способ получения активированной поверхности полиэтилена Российский патент 2019 года по МПК C09J5/02 

Описание патента на изобретение RU2694765C1

Изобретение относится к способам получения активированной поверхности полимера, а именно, к способу изменения поверхностной энергии гидрофобного полиэтилена перед нанесением адгезивов (клеев, покрытий). Способ может найти применение в отраслях промышленности, где необходимо обеспечить высокую прочность связи между полиэтиленом и контактирующим материалом без применения специального оборудования и огнеопасных операций.

Полиэтилен – трудно склеиваемый материал, так как обладает очень низкой поверхностной энергией.

Низкая поверхностная энергия полимерных материалов не обеспечивает требуемые значения прочности соединения полиэтилена с адгезивом.

Для достижения высокой прочности связи (высоких адгезионных характеристик) между поверхностью полиэтилена и адгезивом необходимо, чтобы поверхностная энергия адгезива была меньше поверхностной энергии полиэтилена. Для повышения поверхностной энергии полиэтилена проводят подготовку (активирование) его поверхности.

Известен способ подготовки поверхности изделий из полимеров, предусматривающий обезжиривание, механическую обработку, например, наждачной бумагой (Лебедев Р.А. и др. Напыление, сварка, склеивание. - Л.: Химия, 1973, с. 82).

Известен способ склеивания полимерных материалов, по которому поверхность материала-полимера подвергается механическому воздействию одновременно с нанесением клея или после нанесения его (изобретение авт. свид. СССР №622831 г.).

Известен способ подготовки полиэтилена путем обработки поверхности раствором димером 3,3-диметилен-2,2,6,6-тетраметил-4-оксопипередина (изобретение авт. свид СССР №950743).

Недостатком указанных способов является то, что они не обеспечивают получения достаточно прочного клеевого соединения полимерных материалов.

Наиболее близким техническим решением по патенту РФ №2126810, выбранным в качестве прототипа, является способ подготовки поверхности полимерных материалов перед склеиванием, по которому поверхность полимерного материала подвергается сначала механическому воздействию, потом воздействию тлеющего заряда.

Следует отметить, что вышеуказанный способ требует применения специализированного оборудования для создания тлеющего заряда, пожароопасен и трудновыполним для крупногабаритных изделий.

Технической проблемой является устранение вышеуказанных недостатков, то есть повышение прочностной связи полиэтилен-адгезив до требуемого уровня без применения специализированного оборудования и температурного воздействия за счет активирования поверхности полиэтилена.

Технический результат заключается в том, что полученная согласно способу активированная поверхность полиэтилена обладает высокой поверхностной энергии за счет механического воздействия частицами полиметилметакрилата и обработки поверхности раствором роданида железа (Fe(CNS)3).

Технический результат достигается тем, что в способе получения активированной поверхности полиэтилена, включающем в себя подготовку поверхности, механическую, химическую обработки и сушку, механической обработки используют абразив из полиметилметакрилата, а для химической обработки используют раствор роданида железа 3-7% концентрации в дистиллированной воде.

Отличительные признаки являются существенными.

При механической обработке поверхности полиэтилена использование абразива из полиметилметакрилата (шлифовальная бумага с напылением дробленого оргстекла или дробь оргстекла фракцией от 0,5 до 1 мм) позволяет удалить слабые граничные слои полиэтилена, увеличить площадь взаимодействия полиэтилена с адгезивом.

При внедрении частиц полиметилметакрилата в обрабатываемую поверхность происходит их адсорбционная и химическая связь с полиэтиленом.

При наложении внешней нагрузки на полиэтилен частицами полиметилметакрилата концентрация различных, прежде всего кислородсодержащих, функциональных групп в полиэтилене возрастает, что приводит к изменению свойства поверхностных зон полиэтилена.

Благодаря механической деструкции полиэтилена на воздухе значительно увеличивается содержание альдегидных и карбоксилатных групп, в меньшей степени метальных и монозамещенных этиленовых групп, что является непосредственной предпосылкой изменения прочности клеевых соединений.

Нанесение раствора роданида железа на поверхность полиэтилена Fe(CNS)3) концентрацией от 3 до 7% обеспечивает создание на поверхности полиэтилена устойчивой гидрофильной поверхности. Раствор роданид железа представляет собой комплексное соединение, которое взаимодействует с атомами углерода (основа полимерной цепочки), при этом мицеллы организуются таким образом, что их гидрофобные концы направлены внутрь, а гидрофильные - наружу.

Приготовление раствора роданида железа протекает по следующей схеме:

- добавляют расчетное количество порошка роданида калия (гр.) в насыщенный раствор хлорного железа (л);

- разбавляют полученный раствор в дистиллированной воде до требуемой концентрации.

Для определения критической концентрации были проведены исследования влияния различных концентраций роданида железа на изменение адгезионной прочности клеевой границы:

Сталь 3 + клей К-153 без наполнителя + полиэтилен низкого давления

Предел прочности при отрыве активированной поверхности полиэтилена от Стали 3 в зависимости от концентрации роданида железа представлен в таблице.

Анализ данных таблицы показывает, что:

- снижение концентрации роданида железа менее 3% приводит к значительному снижению прочности связи полиэтилена с клеем. Наиболее вероятно это связано с тем, что низкая концентрация не обеспечивает образование сплошной гидрофильной поверхности полиэтилена.

- повышение концентрации роданида железа более 7% не приводит к повышению прочности связи и экономически нецелесообразно. Это связано с достижением максимального количества гидрофильных групп на единицу площади поверхности полиэтилена.

Таким образом, оптимальной концентрацией роданида железа в дистиллированной воде составляет 3-7%.

Далее рассмотрены примеры использования способа получения активированной поверхности полиэтилена при проведении операции склеивания полиэтилена с металлической поверхностью (пример 1) и операции нанесения на поверхность полиэтилена лакокрасочного покрытия (пример 2).

Пример 1.

1. Изготавливают крошку полиметилметакрилата (оргстекла) размером фракции от 0,5 до 1 мм с использованием дробильной машины для полимеров.

2. Готовят 6% раствор роданида железа (Fe(CNS)3). Для этого:

2.1 Добавляют 2,1 г порошка роданида калия в 19,4 г насыщенного раствора хлорного железа (20%);

2.2 Разбавляют полученной раствор в 78,5 г дистиллированной воды.

3. Подготавливают стальные бобышки диаметром 35 мм (ОСТ 92-1476-74) к операции склеивания согласно ОСТ 92-0949-2013 (обработать электрокорундом и обезжирить).

4. Подготавливают поверхность листа полиэтилена толщиной 2 мм к операции склеивания:

4.1 Обезжиривают бензином поверхность листа полиэтилена;

4.2 Проводят сушку в течение 15 мин при температуре от 15 до 35°С.

4.3 Проводят дробеструйную обработку поверхности полиэтилена крошкой из полиметилметакрилата.

4.4 Удаляют крошку полиметилметакрилата с поверхности полиэтилена кистью или пылесосом.

4.5 Наносят кистью 6% раствор роданида железа на подготовленную поверхность листа полиэтилена.

4.6 Проводят сушку в течение 24 ч при температуре от 15 до 35°С.

4.7 Вырубают диски диаметром 35 мм из листа подготовленного полиэтилена.

5 Наносят на обе поверхности дисков из полиэтилена и на рабочую поверхность бобышек эпоксидный клей К-153.

6 Проводят сборку образцов по схеме: металл-полиэтилен-металл.

7 Проводят режим полимеризации клея К-153 при давлении 1 кгс/см2, температуре от 15 до 35°С в течение 24 ч.

Пример 2.

1. Изготавливают крошку полиметилметакрилата (оргстекла) размером фракции от 0,5 до 1 мм с использованием дробильной машины для полимеров.

2. Готовят 3% раствор роданида железа (Fe(CNS)3). Для этого:

2.1 Добавляют 1,1 г порошка роданида калия в 9,7 г насыщенного раствора хлорного железа (20%);

2.2 Разбавляют полученной раствор в 89,2 г дистиллированной воды.

3. Готовят поверхность трубы из полиэтилена к нанесению эмали ЭП-525:

3.1 Обезжиривают бензином поверхность трубы.

3.2 Проводят сушку в течение 15 мин при температуре от 15 до 35°С.

3.3 Проводят дробеструйную обработку поверхности трубы полиметилметакрилатом.

3.4 Удаляют крошку полиметилметакрилата с поверхности полиэтилена кистью или пылесосом.

3.5 Наносят кистью 3% раствор роданида железа на подготовленную поверхность трубы.

3.6 Проводят сушку в течение 24 ч при температуре от 15 до 35°С.

4. Наносят грунтовочное покрытие АК-070 кистью или краскопультом на поверхность трубы.

5. Проводят сушку в течение 24 ч при температуре от 15 до 35°С.

6. Наносят эмаль ЭП-525 с отвердителем кистью или краскопультом на поверхность трубы.

7. Проводят сушку в течение 24 ч при температуре от 15 до 35°С.

Таким образом, предлагаемое изобретение позволяет получить активированную поверхность полиэтилена с высокими адгезионными характеристиками без применения специализированного оборудования, температурного воздействия и данный способ можно использовать на любом этапе производства и эксплуатации изделия.

Похожие патенты RU2694765C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОВЕРХНОСТНО-АКТИВНОГО ВОЛОКНИСТОГО УГЛЕРОДНОГО МАТЕРИАЛА 2015
  • Шайдурова Галина Ивановна
  • Лобковский Сергей Анатольевич
  • Лобковский Денис Сергеевич
  • Логинов Дмитрий Алексеевич
  • Антипин Вячеслав Евгеньевич
RU2587095C1
АДГЕЗИВНАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ С МАГНИТНЫМИ СВОЙСТВАМИ 2002
  • Тишин А.М.
  • Сидоров С.Н.
  • Спичкин Ю.И.
RU2225425C1
СПОСОБ МОДИФИКАЦИИ, ПО МЕНЬШЕЙ МЕРЕ, ЧАСТИ ПОВЕРХНОСТИ ПОЛИМЕРА 1996
  • Донг Янг Ву
  • Шенг Ли
  • Войцех Станислав Гутовски
RU2163246C2
Способ обработки поверхности фторсодержащей резины 2019
  • Пичхидзе Сергей Яковлевич
  • Шумилин Александр Иванович
  • Скрипаченко Ксения Константиновна
RU2758411C2
Композиция для изготовления литейных газифицируемых моделей 2023
  • Леушин Игорь Олегович
  • Леушина Любовь Игоревна
  • Горохов Павел Александрович
  • Безухов Андрей Вадимович
RU2818101C1
Способ склеивания фторопластовой стеклоткани с поверхностью изделия 2021
  • Минеев Сергей Николаевич
  • Дятленко Оксана Валерьевна
RU2777642C1
СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ ФТОРСОДЕРЖАЩЕЙ РЕЗИНЫ 2014
  • Скрипаченко Ксения Константиновна
  • Шумилин Александр Иванович
  • Пичхидзе Сергей Яковлевич
  • Кошуро Владимир Александрович
RU2580722C1
СПОСОБ ИЗГОТОВЛЕНИЯ УЗЛОВ СРАЩИВАНИЯ КАБЕЛЯ В ПОЛИЭТИЛЕНОВОЙ ОБОЛОЧКЕ С РЕЗИНОВОЙ ОБОЛОЧКОЙ ГИДРОАКУСТИЧЕСКОЙ АППАРАТУРЫ 1982
  • Синдаловская Людмила Михайловна
  • Матистович Зинаида Семеновна
SU1840036A1
СПОСОБ ПОДГОТОВКИ К ИСПОЛЬЗОВАНИЮ ПРИРОДНОЙ ИЛОВОЙ ГРЯЗИ ОЗЕРА ТАМБУКАН, ОБОЛОЧКА АППЛИКАТОРА И СПОСОБ ПРИМЕНЕНИЯ 2019
  • Левицкий Евгений Станиславович
  • Абрамов Владимир Юрьевич
RU2730840C1
Способ приклеивания пленок и листов полихлорвинила, поливинилденхлорида или полиметилметакрилата к металлу, дереву и др. материала 1946
  • Генерозов А.М.
SU71613A1

Реферат патента 2019 года Способ получения активированной поверхности полиэтилена

Изобретение относится к полимерной и клеевой промышленности и может быть использовано для подготовки полиэтилена перед нанесением адгезивов. Для получения активированной поверхности полиэтилена осуществляют подготовку поверхности, механическую, химическую обработки и сушку. Для механической обработки поверхности используют абразив из полиметилметакрилата, а для химической обработки поверхности используют раствор роданида железа Fe(CNS)3 3-7% концентрации в дистиллированной воде. Обеспечивается повышение поверхностной энергии полиэтилена и повышение прочностной связи полиэтилен-адгезив. 1 табл., 2 пр.

Формула изобретения RU 2 694 765 C1

Способ получения активированной поверхности полиэтилена, включающий в себя подготовку поверхности, механическую, химическую обработки и сушку, отличающийся тем, что для механической обработки поверхности используют абразив из полиметилметакрилата, а для химической обработки поверхности используют раствор роданида железа Fe(CNS)3 3-7% концентрации в дистиллированной воде.

Документы, цитированные в отчете о поиске Патент 2019 года RU2694765C1

СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ПОЛИМЕРНЫХ МАТЕРИАЛОВ ПЕРЕД СКЛЕИВАНИЕМ 1997
  • Булатова Н.В.
  • Нурутдинов М.Х.
  • Ермаков В.И.
RU2126810C1
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ТЕРМОПЛАСТИЧНОГО МАТЕРИАЛА ПЕРЕД СКЛЕИВАНИЕМ 0
SU293031A1
Способ подготовки к склеиванию полиэтилена 1978
  • Притыкин Лев Маркович
  • Генель Леонид Самуилович
  • Шапиро Анатолий Борисович
  • Розанцев Эдуард Григорьевич
  • Вакула Владимир Леонтьевич
  • Акутин Модест Сергеевич
  • Драновский Михаил Григорьевич
SU950743A1
Способ механической обработки поверхности изделий из полиолефинов 1985
  • Замостьянов Владимир Николаевич
  • Бегишев Александр Михайлович
  • Болгов Владимир Дмитриевич
  • Кузнецова Ольга Викторовна
SU1391928A1
CN 101503600 A, 12.08.2009.

RU 2 694 765 C1

Авторы

Шайдурова Галина Ивановна

Васильев Игорь Львович

Зубарев Сергей Александрович

Гаврилович Вероника Ильинична

Даты

2019-07-16Публикация

2018-08-28Подача