СПОСОБ ПОЛУЧЕНИЯ ПОВЕРХНОСТНО-АКТИВНОГО ВОЛОКНИСТОГО УГЛЕРОДНОГО МАТЕРИАЛА Российский патент 2016 года по МПК D01F11/12 

Описание патента на изобретение RU2587095C1

Изобретение относится к технологии получения поверхностно-активированных тканых и нетканых материалов и может быть использовано при изготовлении эрозионно-стойких деталей соплового блока ракетных двигателей твердого топлива (РДТТ).

Разработка конкурентоспособной продукции на современном этапе диктует необходимость развития материаловедения и уровня технологической оснащенности производства препрегов и полимерно-композиционных материалов из них.

В качестве наполнителя выбран углеродный волокнистый материал, как наиболее перспективный армирующий наполнитель композитов конструкционного назначения.

Известно, что углеродные волокна характеризуются невысокими значениями поверхностного натяжения и слабой адгезией к ним полимерных матриц. Следовательно, при использовании углеродных волокон для армирования пластмасс необходимо проводить обработку их поверхности с целью повышения адгезии на границе «волокно-матрица».

Обработка армирующего волокна поверхностно-активными веществами (ПАВ) является эффективным методом изменения поверхностной энергии и физико-механических характеристик углеродного наполнителя.

Изменение поверхностной энергии наполнителя вызвано необходимостью уменьшения угла смачивания, достигаемого в настоящее время методом прокаливания, что является недостаточным для обеспечения сдвиговой когезионной и адгезионной прочности углепластиковых деталей.

Изменение поверхностной энергии волокнистого материала реально может быть достигнуто различными методами:

- ионно-плазменной обработкой с воздействием магнитного поля в присутствии окислителя;

- электрохимической обработкой;

- ступенчатой карбонизацией;

- электроосаждением различных металлов (Cu, Ni, Fe) или нанотрубок, полученных отдельно или совместно с металлами переменной валентности в композициях с функционально-активными группами (полифосфатами).

Рассмотренные выше методы сложны в реализации с технологической точки зрения при обработке относительно больших площадей наполнителя.

Известен способ поверхностной обработки углеродного (гидратцеллюлозного) волокна является пропитка его водным раствором хлористого цинка 10÷40% концентрации (патент РФ №2000360).

Однако при использовании данного способа требуется проведение дополнительных операций карбонизации и активирования, что значительно усложняет технологический процесс.

Наиболее близким аналогом (прототип) к заявляемому является способ повышения угла смачивания углеродного волокна, описанный в статье Шайдуровой и др. «Исследование влияния активирования поверхностей на физико-механические характеристики углепластиков» (Сборник тезисов докладов 1V Международной конференции «ТЕХНИЧЕСКАЯ ХИМИЯ, ОТ ТЕОРИИ К ПРАКТИКЕ», г. Пермь, 20-24 октября 2014 г., с. 41).

Однако следует отметить, что концентрация химического раствора роданида железа может оказывать большое влияние на изменение физико-механических характеристик композита в совокупности с дистиллированной водой.

Технически наиболее простым и эффективным является способ активирования поверхности углеродсодержащего материала с использованием при этом в качестве активатора поверхностно-активных веществ (ПАВ), растворов неорганических и органических солей, смесей органических растворителей и др., способных изменить угол смачивания гидрофобных материалов в сторону гидрофильности.

Задачей изобретения является упрощение способа активирования углеродосодержащих наполнителей.

Задача ставится с целью улучшения смачивания и пропитываемости структуры материалов, обеспечивающей повышение физико-механических характеристик (ФМХ) отвержденного полимерно-композиционного материала в эрозионно-стойкой детали, изготовленной методом прессования или намоткой.

Технический результат достигается тем, что в способе получения поверхностно-активного волокнистого углеродного материала, включающем обработку углеродной ткани, изготовленной из вискозных волокон, роданидом железа, используют 5% раствор роданида железа в дистиллированной воде и обработку проводят перед пропиткой углеродной ткани связующим.

Поставленная задача решается с помощью предлагаемого способа активирования поверхности волокнистых наполнителей, доказательство приведено ниже.

Исследования в этой области показали, что наилучшие результаты по физико-механическим показателям достигаются путем обработки волокнистого гидрофобного наполнителя использованием роданида железа Fe(CNS)3 - соль тиоциановой кислоты, при этом угол смачивания волокна составляет 180°.

На фиг. 1 приведена схема пропитки углеродной ткани раствором роданида Fe(CNS)3 5%-ной концентрации в дистиллированной воде;

на фиг. 2 - схема сборки технологического пакета для пропитки под вакуумом (метод вакуумной инфузии);

на фиг. 3 - таблица: Результаты исследований;

на фиг. 4 - таблица: Структурный анализ углепластиков.

На фиг. 1, 2 показаны:

1 - углеродный материал;

2 - 5% раствор роданида Fe(Fe(CNS)3);

3 - формообразующая оснастка;

4 - слой модифицированной углеродной ткани;

5 - слой дренажной и жертвенной ткани;

6 - запитывающий штуцер;

7 - распределительная сетка;

8 - штуцер вакуумной линии;

9 - жгут-замазка;

10 - вакуумный мешок.

Нанесение роданида железа (фиг. 1) на поверхность волокнистого наполнителя также улучшает его термодинамические свойства и способствует повышению гидрофильности углеродного материала 1 и, как следствие, качества его пропитки раствором связующего. Роданид железа 2 представляет собой комплексное соединение, которое взаимодействует с атомами углерода на поверхности волокнистого материала, при этом мицеллы организуются таким образом, что их гидрофобные концы направлены внутрь, а гидрофильные - наружу.

Приготовление активатора протекает по следующей схеме:

- добавление расчетного количества порошка роданида калия (гр.) в насыщенный раствор хлорного железа (л);

- разбавление полученного раствора в дистиллированной воде до требуемой концентрации.

Большую роль играет критическая концентрация мицеллообразования молекулы поверхностно-активного вещества, так как мицеллы проявляют свои смачивающие и эмульгирующие свойства только при критической концентрации.

Для определения критической концентрации были проведены исследования влияния различных концентраций роданида железа на изменение физико-механических свойств наполнителя, а также влияние критической концентрации активатора на ФМХ композита на основе углеродной ткани Урал Т-22Р ЭХО-«А» с эпоксидным связующим ЭДТ-10П.

Углепластиковые образцы для определения ФМХ вырезаны из плит, изготовленных вакуумно-инфузионным методом формования (фигура 2).

Метод вакуумной инфузии заключается в том, что находящийся в специальной обогреваемой емкости расплав связующего под действием вакуума через запитывающий штуцер 6 подают в предварительно собранный на формообразующей оснастке 3 и герметично упакованный технологический пакет, состоящий из слоя дренажной и жертвенной ткани 5, распределительной сетки 7, вакуумного мешка 10, жгута-замазки 9 и слоя модифицированной углеродной ткани 4, пропитывает их, вытесняя по мере заполнения формы оставшийся воздух через штуцер вакуумной линии 8.

Результаты исследований приведены в таблице (фигура 3).

Анализ данных таблицы показывает:

- критическая концентрация роданида железа 2 должна составлять 5%;

- модифицирующий компонент позволяет повысить прочность наполнителя и композита, ориентировочно, на 15÷25%.

Структурный анализ структуры углепластиков проводился методом оптической микроскопии на приборе МЕТАМ ЛВ-31 (таблица - фигура 4).

Анализ структуры указывает на то, что углепластики, обработанные раствором роданида железа 2, обладают более однородной структурой, что позволяет устранить свободные вакансии в массиве материала, а главное - изменить ФМХ композита в сторону существенного повышения.

Изобретение обеспечивает технически наиболее простой способ активирования поверхности тканых материалов, позволяющий обеспечивать существенное повышение физико-механических характеристик полимерно-композиционного материала за счет равноплотности структуры (на границе межфазного взаимодействия эрозионно-стойких деталей, изготовленных намоткой или прессованием, за счет изменения энергии Гиббса контактирующих поверхностей при значительном повышении угла смачивания активированного наполнителя полимерной матрицей.

Похожие патенты RU2587095C1

название год авторы номер документа
Способ получения поверхностно-активированного волокнистого углеродного материала 2017
  • Шатров Владимир Борисович
  • Шайдурова Галина Ивановна
  • Малышева Анастасия Владимировна
  • Мелехин Александр Григорьевич
  • Ощепкова Марина Юрьевна
RU2660865C1
Эпоксидное связующее 2018
  • Шайдурова Галина Ивановна
  • Васильев Игорь Львович
  • Ощепкова Марина Юрьевна
  • Павловец Георгий Яковлевич
  • Зубарев Сергей Александрович
RU2677210C1
ВЫСОКОПРОЧНЫЙ ВОДОСТОЙКИЙ ОРГАНОКОМПОЗИТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2015
  • Трофимов Александр Николаевич
  • Косолапов Алексей Федорович
  • Беляева Евгения Алексеевна
  • Шацкая Татьяна Евгеньевна
  • Натрусов Владимир Иванович
  • Ветохин Сергей Юрьевич
  • Байдаков Борис Владимирович
  • Шкуренко Светлана Ивановна
  • Галицын Владимир Петрович
  • Харченко Евгений Фёдорович
  • Осипчик Владимир Семёнович
  • Кузнецов Алексей Александрович
  • Гильман Алла Борисовна
  • Колесников Артем Владимирович
  • Журавлев Николай Юрьевич
  • Егоров Александр Иванович
  • Демихов Сергей Викторович
RU2604621C1
Эпоксидное связующее 2015
  • Шайдурова Галина Ивановна
  • Лобковский Сергей Анатольевич
  • Ощепкова Марина Юрьевна
  • Глумова Марина Владленовна
  • Лобковский Денис Сергеевич
RU2606614C1
Углепластик на основе полифениленсульфидного связующего и способ его получения (варианты) 2023
  • Амиров Рустэм Рафаэльевич
  • Антипин Игорь Сергеевич
  • Балькаев Динар Ансарович
  • Соловьев Руслан Ильдарович
  • Амирова Лилия Миниахмедовна
RU2816084C1
Способ получения активированной поверхности полиэтилена 2018
  • Шайдурова Галина Ивановна
  • Васильев Игорь Львович
  • Зубарев Сергей Александрович
  • Гаврилович Вероника Ильинична
RU2694765C1
Углеродкерамический волокнисто-армированный композиционный материал и способ его получения 2017
  • Бейлина Наталия Юрьевна
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
  • Щербакова Татьяна Сергеевна
  • Грудина Иван Геннадиевич
RU2684538C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ УГЛЕРОДНЫХ ВОЛОКОН 2018
  • Нелюб Владимир Александрович
  • Горберг Борис Львович
  • Берлин Александр Александрович
RU2698809C1
Полифениленсульфидные стекловолоконные композиты и способ их получения 2021
  • Беев Ауес Ахмедович
  • Хаширова Светлана Юрьевна
  • Слонов Азамат Ладинович
  • Мусов Исмел Вячеславович
  • Беева Джульетта Анатольевна
RU2770361C1
Полифениленсульфидные стекловолокнистые композиты и способ их получения 2021
  • Беев Ауес Ахмедович
  • Хаширова Светлана Юрьевна
  • Слонов Азамат Ладинович
  • Мусов Исмел Вячеславович
  • Беева Джульетта Анатольевна
RU2770087C1

Иллюстрации к изобретению RU 2 587 095 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ ПОВЕРХНОСТНО-АКТИВНОГО ВОЛОКНИСТОГО УГЛЕРОДНОГО МАТЕРИАЛА

Изобретение может быть использовано при изготовлении эрозионно-стойких деталей соплового блока ракетных двигателей твердого топлива (РДТТ). Поверхностно-активный волокнистый углеродный материал получают обработкой углеродной ткани, изготовленной из вискозных волокон, 5% раствором роданида железа в дистиллированной воде. Затем пропитывают связующим. Способ прост и позволяет повысить физико-механические характеристики полимерно-композиционного материала. 4 ил.

Формула изобретения RU 2 587 095 C1

Способ получения поверхностно-активного волокнистого углеродного материала, включающий обработку углеродной ткани, изготовленной из вискозных волокон, роданидом железа, отличающийся тем, что используют 5% раствор роданида железа в дистиллированной воде и обработку проводят перед пропиткой углеродной ткани связующим.

Документы, цитированные в отчете о поиске Патент 2016 года RU2587095C1

ШАЙДУРОВА Г.И
и др., Исследование влияния активирования поверхностей на физико-механические характеристики углепластиков, Сборник тезисов докладов IV Международной конференции "ТЕХНИЧЕСКАЯ ХИМИЯ
ОТ ТЕОРИИ К ПРАКТИКЕ", Пермь, 20-24 октября 2014, с.41
Способ активирования углеродных насадок для разложения амальгам 1972
  • Антонов Виктор Никитович
  • Авксентьев Иктор Васильевич
  • Аронович Исаак Миронович
  • Арчаков Виктор Павллович
  • Волков Георгий Иванович
  • Каверов Алексей Трофимович
  • Камарьян Георгий Мкртычевич
  • Кубасов Владимир Леонидович
  • Морозов Виктор Герасимович
  • Сорокотяга Иван Семенович
  • Фисин Владимир Иванович
  • Черненко Николай Иванович
SU481541A1
RU 2000360 C, 07.09.1993
ПОЛИМЕРНОЕ СВЯЗУЮЩЕЕ ДЛЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2006
  • Данюшина Галина Алексеевна
  • Логинов Владимир Тихонович
  • Дерлугян Игорь Дмитриевич
  • Дерлугян Петр Дмитриевич
  • Левинцев Валерий Анатольевич
  • Павлова Людмила Матвеевна
RU2322464C1
КАПЛЕНКО О.Г
и

RU 2 587 095 C1

Авторы

Шайдурова Галина Ивановна

Лобковский Сергей Анатольевич

Лобковский Денис Сергеевич

Логинов Дмитрий Алексеевич

Антипин Вячеслав Евгеньевич

Даты

2016-06-10Публикация

2015-03-23Подача