Способ измерения электропроводности тонких металлических пленок Российский патент 2019 года по МПК G01N27/90 G01R27/02 

Описание патента на изобретение RU2697473C1

Изобретение относится к контрольно-измерительной технике и может применяться для бесконтактного измерения удельной электрической проводимости тонких металлических пленок толщиной от 0,05 до 5 мкм.

Актуальность данного изобретения обусловлена необходимостью оперативного и точного контроля электромагнитных параметров материалов в процессе их производства и эксплуатации.

Известно устройство, предназначенное для измерения электропроводности диэлектрического материала (в том числе тонких пленок), включающее в себя генератор, приемник и излучатель электромагнитного сигнала, волновые тройники, фазовращатель, аттенюатор, детектор и блок обработки информации (Пат.RU 2528130 С1 МПК G01N 22/04, G01R 27/26 опубл. 10.09.2014). Недостатком устройства является влияние подложки пленки на результаты измерений. Это снижает точность измерений и требует дополнительной программной обработки для устранения помех, вносимых подложкой.

Прототипом заявляемого изобретения является устройство измерения электрической проводимости материалов с кюветой для контролируемой пленки, помещаемой в датчики, входы которых соединены с питающим генератором, а выходы - с блоком обработки (Пат.RU 156519 МПК G01R 27/00, В82В 1/00 опубл. 10.11.15). Устройство бесконтактного контроля электромагнитных параметров тонких пленок и наноматериалов содержит генератор, сигнал с выхода которого приходит на излучатель электромагнитного сигнала, и блок обработки. На пути следования сигнала к объекту контроля расположен разветвитель сигнала, один из выходов которого индуктивно соединен с приемником первоначального сигнала, выход которого подключен к одному из входов измерителя амплитуды и фазы, второй вход которого подключен к выходу приемника отраженного от объекта контроля сигнала, а выход измерителя амплитуды и фазы подключен к входу блока обработки и входу блока управления, выход которого подключен к генератору. Очевидна недостаточная точность измерений при контроле пленок, имеющих малый коэффициент отражения для выбранной длины волны излучения. Это связано с тем, что отраженный сигнал несет в себе информацию не только о контролируемом материале, но и о подложке, так как прошедший через пленку зондирующий сигнал отражается также и от подложки, накладывается на сигнал, отраженный от поверхности пленки, и искажает тем самым информационную картину процедуры измерения.

Технической задачей изобретения является снижение погрешности измерения электропроводности тонких пленок, имеющих малый коэффициент отражения, путем применения вихретокового метода с последующей аппаратной и программной обработкой, позволяющей проводить математическую обработку получаемого сигнала.

Заявляемый способ измерения электропроводности тонких пленок представляет собой оценку усредненной амплитуды двух сигналов вихретокового преобразователя (первый сигнал - от исследуемого образца тонкой металлической пленки, второй сигнал - от подложки), полученных с использованием измерительной системы, являющейся программно-аппаратным комплексом, включающим персональный компьютер и программное обеспечение, а также блоки генерации, усиления и фильтрации.

Способ осуществляется следующим образом: в работе используют два вихретоковых преобразователя, причем управление сигналом на возбуждающих обмотках вихретоковых преобразователей и прием сигналов с измерительных обмоток вихретоковых преобразователей происходит с использованием микроконтроллера, позволяющего формировать сигнал, а программное обеспечение дополнительно включает блоки: задачи частоты генерации и фильтрации; при этом сигналы С1 и С2 с измерительных обмоток, несущие информацию о состоянии исследуемого материала подвергаются усилению и фильтрации и поступают на аналого-цифровой преобразователь и амплитудный детектор, а затем поступают в программный блок обработки сигнала, после чего отображается на мониторе персонального компьютера, при этом сигнал С1 с измерительной обмотки первого преобразователя соответствует сигналу от подложки, а сигнал С2 с измерительной обмотки второго преобразователя соответствует сигналу от тонкой металлической пленки, при этом управление частотой генерации и частотой фильтрации осуществляется синхронно за счет связи программного блока генерации и блока фильтрации, управляемого программным блоком фильтрации, в качестве параметра, несущего информацию об электропроводности пленки (σ, МСм/м), используют разность усредненных амплитуд (<ΔU>, мВ) двух сигналов С1 и С2, а электропроводность тонкой металлической пленки находят из экспериментально полученного уравнения вида f(x)=0,0809x-0,3696, где х - разность амплитуд Δ<U>двух сигналов С1 и С2.

Блок генерации 1 (фиг. 1) осуществляет управление генератором 2, производящим формирование сигнала и, предварительно усилив с использованием усилителя 3, передающего его на возбуждающие катушки вихретоковых преобразователей 4, 5. Первый вихретоковый преобразователь размещают над электропроводящей металлической тонкой пленкой, размещенной на подложке, второй вихретоковый преобразователь размещают над подложкой (без металлической тонкой пленки). Возбуждающие катушки вихретоковых преобразователей при прохождении сигнала формируют электромагнитное поле, возбуждающее вихревые токи в тонкой металлической пленке, размещенной на подложке и в подложке. Электромагнитное поле вихревых токов воздействует на измерительные катушки 6, 7 вихретоковых преобразователей, наводя в них электродвижущие силы (ЭДС), несущие информацию об электропроводности подложки и тонкой металлической пленки в виде сигналов С1 и С2 соответственно. Сигналы усиливаются в усилителе 8 и проходят через блоки фильтрации 9, управляемые программным блоком фильтрации 10, связанным с программным блоком генерации 1. Изменение частоты фильтрации происходит одновременно с изменением частоты генерации. Сигналы передаются на амплитудный детектор 11, через аналого-цифровой преобразователь 12, в программный блок обработки сигнала 13, где происходит вычисление усредненной амплитуды сигнала С1 и С2, затем происходит вычисление разности усредненной амплитуды сигнала С1 и амплитуды сигнала С2, после чего результаты измерений выводятся на экран персонального компьютера в виде графика и значения разности усредненных амплитуд сигналов. Полученное значение разности усредненных амплитуд сигналов сравнивается с эталонными значениями, заложенными в программное обеспечение, после чего производится определение электропроводности исследуемой пленки и вывод значения электропроводности на экран. Заявляемый способ отличается от прототипа:

• Измерением исключительно амплитуды сигнала, производимым детектором с линейной характеристикой преобразования.

• Наличием автоматического синхронного изменения рабочих частот сигнала с генератора и частот фильтрации принимаемого сигнала.

В качестве параметра, несущего информацию об электропроводности пленки, используется значение разности усредненных амплитуд сигналов от преобразователя, расположенного над тонкой металлической пленкой и преобразователем, расположенным над подложкой.

За счет использования сигналов от двух вихретоковых преобразователей, с возможностью быстрого и одновременного изменения рабочей частоты приборы и частоты фильтрации, удается избавиться от влияния зазора между вихретоковым преобразователем и контролируемым изделием при проведении измерений. Использование в качестве информативного параметра разности усредненных амплитуд сигналов позволяет реализовать измерительную систему без внесения погрешностей от подложки тонкой пленки с использованием исключительно амплитудного метода контроля. За счет вычитания амплитуд сигналов, несущих информацию о подложке и пленке, становится возможным повысить помехозащищенность сигнала, несущего информацию об объекте контроля.

Пример осуществления способа. В приспособлении для напыления первым закрепляется нагреватель, на поверхность которого наносится 0,005-0,01 г напыляемого сплава, затем над ним закрепляется Pt-Pd-подложка, которая помещается в стандартный держатель вакуумной камеры. Для улучшения электрического контакта и устранения прогибов нагревателя и подложки перед пропусканием тока через образец кратковременно (200-250 мс) включается система нагружения установки, после этого закрывается крышка вакуумной камеры, производится откачка системы до остаточного давления 10-3-10-4 Па. После откачки камеры осуществляется нагрев испарителя и подложки до температуры белого каления платины 3200°С путем пропускания постоянного тока 100 А напряжением 4 В в течение 200-250 мс; затем система охлаждается в течение 2-5 мин, производится напуск воздуха в камеру, открывается крышка и извлекается образец. После этого образец исследовался с использованием разработанного способа.

Блок генерации 1 управляет генератором 2, который передает сигнал частотой fl на возбуждающие катушки 4, 5 вихретоковых преобразователей, которые создают электромагнитное поле, индуцирующее вихревые токи в электропроводящем объекте контроля. Сигналы проходят усилитель мощности 3, где их напряжение возрастает до 3 В, необходимых для проведения измерений и попадают на возбуждающие катушку 4, 5 вихретоковых преобразователей. В результате возбуждающие катушки создают магнитное поле, проникающее в исследуемую тонкую пленку и подложку. Магнитное поле наводит вихревые токи в исследуемом образце, которые, в свою очередь, наводят напряжение в измерительных катушках 6, 7. Напряжение в виде сигналов С1 и С2 несет информацию о подложке и тонкой пленке соответственно. Сигналы проходит через блок усиления 8 и переходит на блок фильтрации сигнала 9, управляемый программным блоком фильтрации 10, связанным с программным блоком генерации 1. Изменение частоты фильтрации происходит одновременно с изменением частоты генерации. Два сигнала передаются на амплитудный детектор 11, через аналого-цифровой преобразователь 12, в программный блок обработки сигнала 13 и результаты измерений выводятся на экран персонального компьютера в виде графика и значения разности усредненных амплитуд двух сигналов С1 и С2. Электропроводность (σ, МСм/м) определяется согласно экспериментально полученному уравнению f(x)=0,0809х-0,3696, по графику (фиг. 2.), построенному по образцам пленок с известной электропроводностью, где точка 1 соответствует образцу алюминия с электропроводностью 1 МСм/м и значения разности амплитуд сигнала 16,8 мВ, точка 2 соответствует образцу алюминия с электропроводностью 1,23 МСм/м и значения разности амплитуд сигнала 19,6 мВ. Пример распределения сигнала, полученного на образце тонкой пленки из алюминия с неизвестной электропроводностью, представлен на фиг. 3. В области А1 усредненная амплитуда сигнала составила 29 мВ, в области А2 - 10,8 мВ. Разница между амплитудой в области А1 и амплитудой в области А2 (Δ<U>) составляет 18,2 мВ. В соответствии с фиг. 2 подставляя полученную разницу в уравнение f(x)=0,0809х-0,3696, вычисляют значение электропроводности тонкой пленки из алюминия - 1,10278 МСм/м. Представленный способ применялся для измерения электропроводности тонких пленок, изготовленных из других проводящих материалов. Данные измерений представлены в табл. 1. При этом, разность амплитуд<AU>соответствовала переменной х, а электропроводность σ соответствовала f(x) в уравнении f(x)=0,0809х-0,3696.

Похожие патенты RU2697473C1

название год авторы номер документа
Вихретоковая измерительная система для контроля качества и толщины упрочняющих покрытий на металлической основе 2017
  • Ишков Алексей Владимирович
  • Иванайский Виктор Васильевич
  • Кривочуров Николай Тихонович
  • Сагалаков Анатолий Михайлович
  • Дмитриев Сергей Федорович
  • Маликов Владимир Николаевич
RU2677081C1
Дефектоскоп для сварных швов 2015
  • Дмитриев Сергей Федорович
  • Ишков Алексей Владимирович
  • Маликов Владимир Николаевич
  • Катасонов Александр Олегович
RU2639592C2
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ДЕФЕКТОВ МАЛЫХ ЛИНЕЙНЫХ РАЗМЕРОВ 2014
  • Дмитриев Сергей Федорович
  • Ишков Алексей Владимирович
  • Маликов Владимир Николаевич
RU2564823C1
УСТРОЙСТВО ДВУХПАРАМЕТРОВОГО КОНТРОЛЯ ТОЛЩИНЫ ЭЛЕКТРОПРОВОДНЫХ ПОКРЫТИЙ 2013
  • Богданов Николай Григорьевич
  • Баженов Иван Николаевич
  • Иванов Юрий Борисович
RU2533756C1
Способ измерения толщины металлических пленок 1981
  • Ошеров Рувим Григорьевич
  • Хорошайло Юрий Евгеньевич
SU1078237A1
УСТРОЙСТВО ДЛЯ ВИХРЕТОКОВОГО КОНТРОЛЯ МЕТАЛЛИЧЕСКИХ НЕМАГНИТНЫХ ОБЪЕКТОВ 2016
  • Гольдштейн Александр Ефремович
  • Белянков Василий Юрьевич
RU2629711C1
Способ определения физико-механических характеристик листовых анизотропных полимерных композиционных материалов 1989
  • Дряпочко Юрий Васильевич
  • Дубина Михаил Дмитриевич
  • Локшин Валерий Александрович
SU1753397A1
МОНИТОРНАЯ СИСТЕМА ФИЗИОЛОГИЧЕСКИХ ПАРАМЕТРОВ 1993
  • Бакусов Л.М.
  • Савельев А.В.
RU2089094C1
СПОСОБ ВИХРЕТОКОВОГО ИЗМЕРЕНИЯ ТОЛЩИНЫ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ 2011
  • Сясько Владимир Александрович
  • Ивкин Антон Евгеньевич
RU2456589C1
Способ измерения толщины покрытий 1990
  • Ильясов Рустам Сабитович
  • Бабкин Сергей Энгелевич
  • Комаров Владимир Александрович
SU1730536A1

Иллюстрации к изобретению RU 2 697 473 C1

Реферат патента 2019 года Способ измерения электропроводности тонких металлических пленок

Изобретение относится к контрольно-измерительной технике и может применяться для бесконтактного измерения удельной электрической проводимости тонких металлических пленок толщиной от 0,05 до 5 мкм. Cпособ измерения электропроводности тонких пленок представляет собой оценку усредненной амплитуды сигнала вихретокового преобразователя с использованием измерительной системы, являющейся программно-аппаратным комплексом, включающей в себя персональный компьютер и программное обеспечение, а также блоки генерации, усиления и фильтрации. Согласно изобретению используют два вихретоковых преобразователя, причем управление сигналом на возбуждающих обмотках вихретоковых преобразователей и прием сигналов с измерительных обмоток вихретоковых преобразователей происходит с использованием микроконтроллера, позволяющего формировать сигнал, а программное обеспечение дополнительно включает блоки задачи частоты генерации и фильтрации; при этом сигналы С1 и С2 с измерительных обмоток, несущие информацию о состоянии исследуемого материала, подвергаются усилению и фильтрации и поступают на аналого-цифровой преобразователь и амплитудный детектор, а затем поступают в программный блок обработки сигнала, после чего отображаются на мониторе персонального компьютера, при этом сигнал С1 с измерительной обмотки первого преобразователя соответствует сигналу от подложки, а сигнал С2 с измерительной обмотки второго преобразователя соответствует сигналу от тонкой металлической пленки, при этом управление частотой генерации и частотой фильтрации осуществляется синхронно за счет связи программного блока генерации и блока фильтрации, управляемого программным блоком фильтрации, а электропроводность f(x) тонкой металлической пленки находят из уравнения f(x)=0,0809х-0,3696, где х - разность амплитуд двух сигналов С1 и С2. Изобретение обеспечивает снижение погрешности измерения электропроводности тонких пленок, имеющих малый коэффициент отражения, путем применения вихретокового метода с последующей аппаратной и программной обработкой, позволяющей проводить математическую обработку получаемого сигнала. 3 ил., 1 табл.

Формула изобретения RU 2 697 473 C1

Способ измерения электропроводности тонких металлических пленок, представляющий собой оценку значения разности усредненных амплитуд двух сигналов вихретоковых преобразователей с использованием измерительной системы, включающей вихретоковый преобразователь, блоки генерации, персональный компьютер и программное обеспечение, отличающийся тем, что в работе используют два вихретоковых преобразователя, причем управление сигналом на возбуждающих обмотках вихретоковых преобразователей и прием сигналов с измерительных обмоток вихретоковых преобразователей происходит с использованием микроконтроллера, позволяющего формировать сигнал, а программное обеспечение дополнительно включает блоки задачи частоты генерации и фильтрации; при этом сигналы С1 и С2 с измерительных обмоток, несущие информацию о состоянии исследуемого материала, подвергаются усилению и фильтрации и поступают на аналого-цифровой преобразователь и амплитудный детектор, а затем поступают в программный блок обработки сигнала, после чего отображаются на мониторе персонального компьютера, при этом сигнал С1 с измерительной обмотки первого преобразователя соответствует сигналу от подложки, а сигнал С2 с измерительной обмотки второго преобразователя соответствует сигналу от тонкой металлической пленки, при этом управление частотой генерации и частотой фильтрации осуществляется синхронно за счет связи программного блока генерации и блока фильтрации, управляемого программным блоком фильтрации, а электропроводность f(x) тонкой металлической пленки находят из уравнения f(x)=0,0809х-0,3696, где x - разность амплитуд двух сигналов С1 и С2.

Документы, цитированные в отчете о поиске Патент 2019 года RU2697473C1

0
SU156519A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СВОЙСТВА ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА 2013
  • Ахобадзе Гурам Николаевич
RU2528130C1
Способ определения поверхностного сопротивления проводящей пленки 1988
  • Григулис Юрис Карлович
  • Порис Улдис Раймондович
  • Силиньш Янис Элмарович
SU1626191A1
SU 2835522 A1, 23.08.1983
СN 101324644 A, 17.12.2008.

RU 2 697 473 C1

Авторы

Ишков Алексей Владимирович

Дмитриев Сергей Федорович

Маликов Владимир Николаевич

Катасонов Александр Олегович

Даты

2019-08-14Публикация

2019-01-10Подача