КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ (ВАРИАНТЫ) И ИЗДЕЛИЕ ИЗ НЕГО Российский патент 2019 года по МПК G21F1/08 C22C1/10 C22C21/00 

Описание патента на изобретение RU2698309C1

Область техники

Изобретение относится к материалам для защиты от радиационного излучения, обладающих умеренной теплопроводностью, термостойкостью до 400°С и низким значением коэффициента термического расширения и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды.

Уровень техники

Существует широкий спектр материалов, которые используются или могут быть использованы, для защиты от нейтронного и γ-излучения. Самыми широко используемыми являются: свинец, карбид бора, углеродные материалы, железо и полиэтилен. При этом те или иные материалы обладают рядом недостатков, связанных с физической природой, коррозионной стойкостью или высокой стоимостью. В связи с этим универсального материала, который мог бы использоваться для защиты одновременно от этих видов излучений пока нет, что предполагает использование комплексной защиты. В этом случае, использование композиционных материалов, в частности на алюминиевой основе, является перспективным направлением, которое обеспечит получение эффективной защиты от радиационного излучения и обеспечит необходимую теплопроводность и снизит вес.

Изобретение относится к композиционным материалам на металлической матрице, применяющимся для защиты от ионизирующих излучений в атомной, радиохимической промышленности, военно-морском флоте, авиакосмической промышленности, обслуживающего персонала и окружающей среды.

Известен композиционный материал из алюминиевой матрицы и карбида бора, который включает в себя следующие исходные материалы по массе: 5-40% порошка карбида бора и 60-95% порошка из алюминиевого сплава (заявка на патент CN 106702192, B22F 3/15, С22С 1/05, С22С 21/00, С22С 32/00, C25D 11/04, G21F 1/08, опубл. 24.05.2017 г.) и способ его получения. Композитный материал имеет относительную плотность более 99,8%, прочность на растяжение при комнатной температуре более 280 МПа, предел текучести более 220 МПа, относительное удлинение более 3,5%.

Недостатком данного материала является слишком низкая прочность и защита от радиационного излучения за счет низкой концентрации бора.

Известен алюминиевый композиционный материал, обладающий поглощающей энергию нейтроном, который улучшает способность поглощать нейтроны за счет увеличения содержания В, а также превосходит материалы предшествующего уровня техники с точки зрения механических свойств и обрабатываемости (патент KR 100414958, С22С 21/00, С22С 32/00, G21F 1/08, опубл. 13.01.2014 г.). Алюминиевый композитный материал содержит от 1,5 до 9 масс. % В, остальное алюминий или его сплавы.

Недостатком этого материала является очень низкое содержание бора для эффективной защиты от радиационного излучения.

Известен композиционный материал для радиационной защиты (патент RU 2396232, С04 В 35/563, С04В 35/626, опубл. 10.08.2010 г.). Изобретение направлено на создание высокотвердого керамического материала, который может быть использован для изготовления элементов аппаратов, работающих в условиях ударных воздействий и интенсивного абразивного изнашивания. В результате получается керамический материал на основе карбида бора с микроструктурой, образованной зернами В4С и одного или нескольких тугоплавких соединений, включающих бориды элементов IVb и Vb групп Периодической системы, отличающийся тем, что на поверхности упомянутых зерен равномерно распределена наноразмерная композиция, содержащая карбид бора и одно или несколько из нижеперечисленных соединений: SiC, бориды элементов IVb, Vb, VIb групп Периодической системы, и материал имеет следующий состав, об. %:

карбид бора 63-81 одно или несколько соединений из ряда: SiC, бориды элементов IVb и/или 14-27;

Vb, и/или VIb групп Периодической таблицы

наноразмерные частицы 5-10.

Недостатком этого материала является низкая теплопроводность из-за высокого содержания керамических частиц и высокого значения пористости (около 5%).

Наиболее близким, принятым за прототип, по технической сущности к заявляемому изобретению является композиционный материал (патент US 5700962), имеющий плотность от 2,5 до 2,8 г/см3 и состоит из В4С в диапазоне от примерно 10 до 60 масс. % и металлической матрицы от 40 до 90 масс. %. Металлическая матрица представляет собой алюминий, магний, титан, гадолиний или один из их сплавов. Карбид бора включает один или несколько металлических элементов, добавленных для улучшения свойств материала металлической матрицы путем образования интерметаллических связей с материалом металлической матрицы. Металлические добавки присутствуют в композите в количестве менее примерно 6 масс. %.

Недостатком данного метода является низкая теплопроводность при высоком содержании частиц карбида бора и низкая поглощающая способность из-за низкого содержания карбида бора при высокой теплопроводности.

Раскрытие изобретения

Задачей данного изобретения является разработка материала для защиты от радиационного излучения, обладающего повышенной теплопроводностью и низкой пористостью с сохранением или повышением эффективности защиты от радиационного излучения, из которого изготавливаются элементы конструкций применяемых, в том числе, в качестве сегментов в конструкции транспортно-упаковочного комплекта.

Техническим результатом заявленного изобретения является повышение теплопроводности и повышение радиационной защиты.

В одном предпочтительном варианте осуществления изобретения достижение технического результата обеспечивается тем, что в композиционном материале на основе алюминия, состоящем из карбида бора, матрицы на основе алюминия или алюминиевого сплава, новым является то, что он дополнительно содержит карбид кремния при следующем соотношении компонентов, масс. %:

В4С 40-60 SiC 5-25 Матрица из алюминиевого сплава 35 -55,

причем размер частиц карбида бора и карбида кремния в материале составляет не более 200 мкм, а суммарное содержания карбида бора и карбида кремния не превышает 65 масс. %, матрица - остальное, где в качестве матрицы используется алюминий или алюминиевые сплавы системы Al-Si, содержащие в сумме, по меньшей мере, два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

В другом предпочтительном варианте осуществления изобретения достижение технического результата обеспечивается тем, что в композиционном материале на основе алюминия, состоящем из карбида бора, матрицы на основе алюминия или алюминиевого сплава, новым является то, что он дополнительно содержит изотоп бора 10 и карбид кремния при следующем соотношении компонентов, масс. %:

В4С 30-59 10В 1-10 SiC 5-25 Матрица из алюминиевого сплава 35-55,

причем размер частиц карбида бора, изотопа бора 10 и карбида кремния в материале составляет не более 200 мкм, а суммарное содержания карбида бора, изотопа бора 10 и карбида кремния не превышает 65 масс. %, матрица - остальное, где в качестве матрицы используется алюминий или алюминиевые литейные сплавы системы Al-Si, содержащие в сумме, по меньшей мере, два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

В соответствии с другим аспектом заявленное изобретение относится к изделию, выполненному из любого композиционного материала на основе алюминия, которое описано выше.

Осуществление изобретения Для достижения необходимых свойств использовали карбид бора, изотоп бора 10 и карбид кремния. Бор в виде бористых соединений имеет большое сечение захвата медленных и тепловых нейтронов и характеризуется небольшим вторичным γ-излучением. В отличие от тяжелых и относительно тяжелых элементов, которые применяются в первую очередь для защиты от γ-излучения, легкие вещества, содержащие бор, используются в ядерном реакторе в основном для защиты от нейтронов. Карбид бора и изотоп бора 10 вводится в данный композиционный материал на основе алюминия в качестве источника бора в количестве, достаточном для получения требуемых защитных качеств материала.

Карбид кремния, который в своем составе содержит графит, имеющий хорошие замедляющие и отражающие свойства и являющийся одним из основных материалов для ядерной промышленности. Кроме этого, карбид кремния имеет очень высокую теплопроводность (до 400 Вт/м*К) и широко применяется для упрочнения матриц композиционных материалов на алюминиевой и медной основах. Его введение позволяет одновременно повысить прочность материала и теплопроводность.

В качестве матрицы используются алюминий и литейные алюминиевые сплавы системы Al-Si, имеющие высокие показатели жидкотекучести для процесса пропитки и содержащие в сумме, по меньшей мере, два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

Равномерность распределения частиц карбида бора, изотопа бора 10 и карбида кремния достигается путем обработки в мельницах или других смесителях, позволяющих добиться высокой равномерности распределения. Размер частиц карбида бора, изотопа бора 10 и карбида кремния в материале не более 200 мкм позволяет сохранить допустимый уровень пластичности и обеспечивает равномерное распределение частиц в матрице при пропитке расплавом.

Выбранное соотношение компонентов, равномерность распределения и размера частиц карбида бора, изотопа бора 10 и карбида кремния позволяет получить оптимальный уровень радиационной защиты и теплопроводности.

Примеры осуществления изобретения

Пример 1.

Порошок карбида бора с содержанием 40 масс. % и порошок карбида кремния содержанием 25 масс. % по варианту 1 с размером частиц, не превышающих 200 мкм, обрабатывали в мельницах с шарами из оксида циркония в инертной атмосфере аргона не более 10 часов до получения смеси с равномерным распределением частиц. Далее смесь нагревали в металлической оснастке до температуры 700±10°С и пропитывали расплавом АК9ч, перегретым до температуры 900±10°С с приложением давления не более 10 тонн. В результате получают изделие по варианту 1 в виде элемента конструкции чехла транспортно-упаковочного комплекта (ТУК), обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению отработанного ядерного топлива (ОЯТ). Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Пример 2.

Порошок карбида бора с содержанием 50 масс. % и порошок карбида кремния с содержанием 10 масс. % по варианту 1, с размером частиц, не превышающих 200 мкм, обрабатывали и пропитывали по примеру 1. В результате получают изделие по варианту 1 в виде элемента конструкции чехла ТУК, обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению ОЯТ. Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Пример 3.

Порошок карбида бора с содержанием 60 масс. % и порошок карбида кремния с содержанием 5 масс. % по варианту 1, с размером частиц, не превышающих 200 мкм, обрабатывали и пропитывали по примеру 1. В результате получают изделие по варианту 1 в виде элемента конструкции чехла ТУК, обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению ОЯТ. Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Пример 4.

По варианту 2 порошок карбида бора и изотопа бора 10 с содержанием 30 и 10 масс. %, соответственно, и порошок карбида кремния содержанием 25 масс. % с размером частиц, не превышающих 200 мкм, обрабатывали и пропитывали по примеру 1. В результате получают изделие по варианту 2 в виде элемента конструкции чехла ТУК, обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению ОЯТ. Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Пример 5.

По варианту 2 порошок карбида бора и изотопа бора 10 с содержанием 59 и 1 масс. %, соответственно, и порошок карбида кремния содержанием 5 масс. % с размером частиц, не превышающих 200 мкм, обрабатывали и пропитывали по примеру 1. В результате получают изделие по варианту 2 в виде элемента конструкции чехла ТУК, обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению ОЯТ. Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Исходя из полученных данных, предлагаемый композиционный материал на основе алюминия, состоящий из матрицы на основе алюминиевого сплава и смеси карбида бора и карбида кремния, а также композиционный материал на основе алюминия с добавкой, карбида бора, изотопа бора 10 и карбида кремния показали улучшенную теплопроводность и снижение мощности излучения по отношению к металлокерамическому материалу без карбида кремния и изотопа бора 10.

Похожие патенты RU2698309C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА 2012
  • Гульбин Виктор Николаевич
  • Поливкин Виктор Васильевич
  • Чердынцев Виктор Викторович
  • Горшенков Михаил Владимирович
RU2509818C1
Нейтронно-поглощающий алюмоматричный композитный материал, содержащий гадолиний, и способ его получения 2017
  • Калмыков Александр Викторович
  • Косников Геннадий Александрович
  • Эльдарханов Аднан Саидович
  • Петрович Сергей Юрьевич
  • Беспалов Эдуард Николаевич
RU2679020C2
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА И ИЗДЕЛИЯ ИЗ НЕГО 2004
  • Каблов Е.Н.
  • Абузин Ю.А.
  • Маринин С.В.
  • Варрик Н.М.
RU2261780C1
АЛЮМОМАТРИЧНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ С БОРСОДЕРЖАЩИМ НАПОЛНИТЕЛЕМ 2012
  • Белов Николай Александрович
  • Абузин Юрий Алексеевич
  • Алабин Александр Николаевич
  • Курбаткина Елена Игоревна
RU2496902C1
Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения 2016
  • Поздняков Андрей Владимирович
  • Мостафа Ахмед Лотфи Мохаммед
  • Иссам Ахмед Мохамед
  • Чурюмов Александр Юрьевич
  • Золоторевский Вадим Семенович
RU2639088C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОМАТРИЧНОГО КОМПОЗИТНОГО МАТЕРИАЛА 2015
  • Двилис Эдгар Сергеевич
  • Толкачев Олег Сергеевич
  • Петюкевич Мария Станиславовна
  • Хасанов Олег Леонидович
RU2616315C1
СПОСОБ ПОЛУЧЕНИЯ БОРСОДЕРЖАЩЕГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ 2012
  • Белов Николай Александрович
  • Алабин Александр Николаевич
  • Курбаткина Елена Игоревна
RU2496899C1
ДВУХЦЕЛЕВОЙ КОНТЕЙНЕР ДЛЯ ТРАНСПОРТИРОВКИ И ХРАНЕНИЯ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА 2019
  • Капилевич Александр Натанович
  • Шегельман Илья Романович
  • Богданов Дмитрий Михайлович
  • Васильев Алексей Сергеевич
RU2711078C1
ЧЕХОЛ КОНТЕЙНЕРА ДЛЯ ТРАНСПОРТИРОВКИ И ХРАНЕНИЯ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА 2018
  • Капилевич Александр Натанович
  • Шегельман Илья Романович
  • Богданов Дмитрий Михайлович
  • Васильев Алексей Сергеевич
RU2686476C1
ТЕРМОСТОЙКИЙ НЕЙТРОНОЗАЩИТНЫЙ МАТЕРИАЛ 2012
  • Краев Василий Сергеевич
  • Невзоров Владимир Александрович
  • Казеев Виктор Григорьевич
  • Чернухин Юрий Илларионович
  • Сапожникова Марина Борисовна
  • Голосов Олег Александрович
  • Боровкова Ольга Леонидовна
  • Пышкин Владимир Петрович
  • Давиденко Николай Никифорович
  • Яненко Юрий Евгеньевич
  • Лобков Юрий Михайлович
  • Шарый Олег Алексеевич
RU2522580C2

Реферат патента 2019 года КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ (ВАРИАНТЫ) И ИЗДЕЛИЕ ИЗ НЕГО

Изобретение относится к материалам для защиты от радиационного излучения, обладающим повышенной теплопроводностью, термостойкостью до 400°С и низким значением коэффициента термического расширения, и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды. Композиционный материал на основе алюминия состоит из карбида бора с содержанием от 40 до 60 масс. % и карбида кремния от 5 до 25 масс. %, остальное - матрица из алюминия или литейного алюминиевого сплава системы Al-Si, а также изделие из него. Композиционный материал на основе алюминия состоит из карбида бора с содержанием от 30 до 59 масс. %, изотопа бора 10 с содержанием от 1 до 10 масс. % и карбида кремния от 5 до 25 масс. %, остальное - матрица из алюминия или литейного алюминиевого сплава системы Al-Si, а также изделие из него. Изобретение позволяет повысить теплопроводность и защиту от радиационного излучения. 4 н.п. ф-лы, 1 табл.

Формула изобретения RU 2 698 309 C1

1. Композиционный материал на основе алюминия, состоящий из карбида бора, матрицы на основе алюминия или алюминиевого сплава, отличающийся тем, что он дополнительно содержит карбид кремния при следующем соотношении компонентов, масс. %:

В4С 40-60 SiC 5-25 Матрица из алюминиевого сплава 35-55,

причем размер частиц карбида бора и карбида кремния в материале составляет не более 200 мкм, а суммарное содержания карбида бора и карбида кремния не превышает 65 масс. %, матрица - остальное, где в качестве матрицы используется алюминий или алюминиевые литейные сплавы системы Al-Si, содержащие в сумме по меньшей мере два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

2. Композиционный материал на основе алюминия, состоящий из карбида бора, матрицы на основе алюминия или алюминиевого сплава, отличающийся тем, что он дополнительно содержит изотоп бора 10 и карбид кремния при следующем соотношении компонентов, масс. %:

В4С 30-59 10В 1-10 SiC 5-25 Матрица из алюминиевого сплава 35-55,

причем размер частиц карбида бора, изотопа бора 10 и карбида кремния в материале составляет не более 200 мкм, а суммарное содержания карбида бора, изотопа бора 10 и карбида кремния не превышает 65 масс. %, матрица - остальное, где в качестве матрицы используется алюминий или алюминиевые литейные сплавы системы Al-Si, содержащие в сумме по меньшей мере два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

3. Изделие, выполненное из композиционного материала на основе алюминия по п. 1.

4. Изделие, выполненное из композиционного материала на основе алюминия по п. 2.

Документы, цитированные в отчете о поиске Патент 2019 года RU2698309C1

СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА И ИЗДЕЛИЯ ИЗ НЕГО 2004
  • Каблов Е.Н.
  • Абузин Ю.А.
  • Маринин С.В.
  • Варрик Н.М.
RU2261780C1
СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО БРОНЕМАТЕРИАЛА НА ОСНОВЕ КАРБИДА КРЕМНИЯ И КАРБИДА БОРА И КЕРАМИЧЕСКИЙ БРОНЕМАТЕРИАЛ НА ОСНОВЕ КАРБИДА КРЕМНИЯ И КАРБИДА БОРА 2010
  • Харченко Евгений Федорович
  • Анискович Владимир Александрович
  • Ленский Владимир Валерьевич
  • Гавриков Илья Сергеевич
  • Быков Валерий Анатольевич
RU2440956C1
Устройство для гидравлического транспортирования 1950
  • Холин Н.Д.
  • Шохрин З.О.
SU89241A1
US 2012079916 A1, 05.04.2012
US 4956317 A, 11.09.1990
GB 1328961 A, 05.09.1973.

RU 2 698 309 C1

Авторы

Манн Виктор Христьянович

Крохин Александр Юрьевич

Вахромов Роман Олегович

Градобоев Александр Юрьевич

Рябов Дмитрий Константинович

Иванов Дмитрий Олегович

Даты

2019-08-26Публикация

2018-12-29Подача