Изобретение относится к области неорганической химии, конкретно к созданию нового композиционного материала, состоящего из двух ферромагнетиков MnSb и GaMn с высокими температурами Кюри Тc~330°С и полупроводника GaSb. Такой композит может найти применение для создания инверсных спин-вентильных структур в элементах магнитной памяти высокой компактности и быстродействием, с низким энергопотреблением, а также как материал магнитных переключателей и сенсоров магнитных полей.
В настоящее время ферромагнитные композиты на основе полупроводников AIIIBV широко исследуются в связи с их применением в спинтронике. Большинство работ связано с исследованием ферромагнитных свойств таких композитов в области температур ниже комнатной, что сужает области применения устройств на их основе. В связи с этим, актуальным является поиск и исследование новых композиционных материалов с высокими температурами Кюри. Перспективными ферромагнетиками с высокими температурами Кюри являются MnSb и GaMn с Тc~330°С [Masrour R., et al. Electronic and Magnetic Properties of MnSb Compounds // J. Supercond. Novel Magn., 2015, V. 28, p. 1815-1819; Huh Y., et al. Magnetism and electron transport of MnyGa (1<y<2) nanostructures // J. Appl. Phys., 2013, V. 114, 013906].
Известен способ получения ферромагнитного материала GaMnSb с температурой Кюри выше комнатной, в виде пленочных образцов полученных методом импульсного лазерного распыления мишеней Mn и GaSb на подложку GaAs в среде водорода [А.И. Бобров и др. Исследования структуры ферромагнитного слоя GaMnSb // Физика и техника полупроводников, 2013, Т. 47, с. 1613-1616; Звонков Б.Н. и др. Лазерное распыление в атмосфере водорода как новый метод формирования полупроводниковых наногетероструктур // Нанотехника, 2008, №1, с. 32-43].
Недостатком этого способа является то, что он позволяет получать только нанометровые слои GaMnSb с малым содержанием ферромагнетика GaMn и, как следствие, с низкой чувствительностью к магнитным полям. Другим недостатком способа является сложность технологического процесса.
Известен способ получения ферромагнетика GaMn [Saito Т., Nishimura R. Hard magnetic properties of Mn-Ga melt-spun ribbons // J. Appl. Phys., 2012, V. 112, №8, 083901], состоящий из нескольких этапов. Первый этап заключается в синтезе ферромагнетика путем искрового плавления смеси чистых элементов Ga и Mn в стехиометрическом соотношении в атмосфере аргона. Второй этап включает в себя нагрев порошка GaMn в индукционной печи до плавления, а затем спиннингование расплава. В результате получают микроленты ферромагнетика GaMn. Для получения объемных образцов микроленты подвергают горячему прессованию.
Недостатком этого способа является то, что он позволяет получать материал, состоящий только из одного ферромагнетика GaMn, что сужает область его применения.
Известен способ получения объемных образцов ферромагнитного композита на основе ферромагнетика и полупроводника [I.V. Fedorchenko et al. Composites based on self-assembled MnAs ferromagnet nanoclusters embedded in ZnSnAs2 semiconductor // J. Alloys Compd., 2015, V.650, p. 277-284]. Согласно этому способу композит получают путем непосредственного сплавления полупроводникового соединения ZnSnAs2 и ферромагнетика MnAs при температуре выше температуры 935°С.
Недостатком способа является то, что полученный композит содержит ферромагнетик MnAs с недостаточно высокой температурой Кюри Тc~45°С, что сужает область возможного применения данного композита в качестве материала для устройств спинтроники.
Наиболее близким техническим решением является способ получения магнитного полупроводникового сплава, в состав которого входят GaSb и Mn1.1Sb [Pashkova O.N., et al. Ferromagnetism of GaSb (2% Mn) alloy // Russ. J. Inorg. Chem., 2014, V. 59, p. 1324-1327]. Данный способ относится к способу прямого сплавления перетертых порошков GaSb и Mn, включающему нагрев смеси металлов до температуры 927°С со скоростью нагрева 200°С/ч, выдержку при этой температуре в течение 24 ч и последующую закалку образцов в ледяную воду. В качестве продукта получают поликристаллические слитки.
К недостатку прототипа относится то, что получение композита MnSb-GaMn-GaSb указанным способом невозможно, поскольку плавление MnSb и GaMn происходит с разложением при температурах ниже используемой в прототипе, а именно при 840°С [Kainzbauer P., et al. Experimental Investigation of the Binary Mn-Sb Phase Diagram // J. Phase Equilib. Diffus., 2016, V.37, p. 459-468] и 720°C [Minakuchi K., et al. Phase equilibria in the Mn-rich portion of Mn-Ga binary system. // J. Alloys Compd., 2012, V. 537, p. 332-337], соответственно.
Изобретение направлено на создание способа получения композита, на основе мягкого ферромагнетика MnSb, жесткого ферромагнетика GaMn, и широкозонного полупроводника GaSb, пригодного для создания ферромагнитного материала, востребованного в области спинтроники.
Технический результат достигается тем, что предложен способ получения ферромагнитного композита MnSb-GaMn-GaSb, заключающийся в том, что смесь порошков металлов Mn, Sb и Ga с размером частиц не более 10 мкм, взятых в соотношениях 32-38 ат. % Mn, 32-42 ат. % Sb и 26-33 ат. % Ga, нагревают в бескислородной среде в графитизированной кварцевой ампуле или корундовом тигле со скоростью не выше 100°С/ч до температур 660-720°С, выдерживают при этих температурах в течение 3-6 ч, охлаждают со скоростью 80-200°С/ч до температуры 20-25°С и получают композит состава MnSb-GaMn-GaSb.
Целесообразно, что термическую обработку осуществляют в вакууме или в инертной среде.
Использование мелкодисперсных порошков позволяет увеличить реакционную способность компонентов и снизить температуры плавления металлов, при этом использование порошков с размером частиц более 10 мкм может приводить к увеличению температуры плавления металлов выше температур плавления ферромагнетиков MnSb и GaMn.
Атомные соотношения металлов выбраны из тех соображений, чтобы в результате их плавления получить состав, близкий к составу тройной эвтектики системы MnSb-GaMn-GaSb.
Использование скоростей нагрева свыше 100°С/ч не обеспечивает полноту реакции образования композита.
Температура термической обработки определяется тем, что при нагреве до температур ниже 660°С расплав не образуется, а нагрев выше 720°С приводит к перитектическому разложению ферромагнетика GaMn.
Время выдержки обусловлено тем, что при времени менее 3 ч формирование композита происходит не в полной мере, а использование времени более 6 ч нецелесообразно, поскольку не влияет на технический результат.
Использование скоростей охлаждения менее 80°С/ч нецелесообразно, поскольку не влияет на технический результат. Использование скорости охлаждения свыше 200°С/ч может привести к росту структурных несовершенств в ферромагнитном композите.
Охлаждение проводят до температур 20-25°С, так как это стандартный диапазон комнатных температур.
Сущность изобретения состоит в том, что предложен уникальный способ получения ферромагнитного композита MnSb-GaMn-GaSb с использованием температур ниже температур перитектического разложения MnSb и GaMn.
Изобретение проиллюстрировано следующими фигурами.
Фиг. 1. Дифрактограмма композита MnSb-GaMn-GaSb, полученного по примеру 1.
Фиг. 2. Данные растровой электронной микроскопии для композита MnSb-GaMn-GaSb.
Фиг. 3. Магнитополевые зависимости MnSb-GaMn-GaSb.
Фиг. 4. Дифрактограмма композита MnSb-GaMn-GaSb, полученного по примеру 2.
В Таблице 1 представлены данные локального рентгеноспектрального анализа для композита MnSb-GaMn-GaSb, полученного по примеру 1.
Ниже приведены примеры иллюстрирующие, но не ограничивающие предложенный способ.
Пример 1.
Смесь порошков металлов Mn, Sb и Ga с размером частиц 10 мкм, взятых в соотношениях 33 ат. % Mn, 42 ат. % Sb и 28 ат. % Ga, нагревали в бескислородной среде в графитизированной кварцевой ампуле со скоростью 50°С/ч до 660°С, выдерживали при этой температуре в течение 6 ч, охлаждали со скоростью 80°С/ч до 20°С. Данные рентгенофазового анализа подтверждают, что полученный композит состоит из фаз MnSb, GaMn, GaSb (Фиг. 1). Распределение фаз в композите проиллюстрировано на Фиг. 2. Результаты локального рентгеноспектрального анализа, относящиеся к Фиг. 2, представлены в Таблице 1. Магнитополевые зависимости, представленные на Фиг. 3, показывают, что полученный композит MnSb-GaMn-GaSb является ферромагнетиком.
Пример 2.
По примеру 1, отличающийся тем, что нагрев смеси проводили до 720°С и выдерживали в течение 3 ч. В результате также получали композит MnSb-GaMn-GaSb, что показано на Фиг. 4.
Предложенный способ позволяет получать ферромагнитный композит, состоящий из двух ферромагнетиков с температурами Кюри Тс~330° и широкозонного полупроводника. Данный композит может быть использован при создании материалов, востребованных в магнитоэлектронике.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения ферромагнитного композита AlSb-MnSb | 2017 |
|
RU2649047C1 |
МАГНИТОЧУВСТВИТЕЛЬНЫЙ КОМПОЗИТ | 2016 |
|
RU2633538C1 |
ПОЛУПРОВОДНИКОВЫЙ АНТИФЕРРОМАГНИТНЫЙ МАТЕРИАЛ | 2006 |
|
RU2318262C1 |
Способ получения композитных наноструктурированных порошков на основе графена и оксидов Al, Ce и Zr | 2018 |
|
RU2706652C1 |
ПОЛУПРОВОДНИКОВЫЙ ФЕРРИМАГНИТНЫЙ МАТЕРИАЛ | 2010 |
|
RU2436859C2 |
ПОЛУПРОВОДНИКОВЫЙ ФЕРРИМАГНИТНЫЙ МАТЕРИАЛ | 2007 |
|
RU2392680C2 |
СПОСОБ ПОЛУЧЕНИЯ НИТРИДНОЙ ПЛЕНКИ НА ПОВЕРХНОСТИ GaSb | 2008 |
|
RU2368033C1 |
ФЕРРОМАГНИТНАЯ ПОЛУПРОВОДНИКОВАЯ ГЕТЕРОСТРУКТУРА | 2006 |
|
RU2305723C1 |
МАГНИТНЫЙ ВАНАДИЕВЫЙ ДИСУЛЬФИД ХРОМА-МЕДИ С ГИГАНТСКИМ МАГНИТОСОПРОТИВЛЕНИЕМ | 2006 |
|
RU2324656C2 |
Способ получения антимонида галлия с большим удельным электрическим сопротивлением | 2016 |
|
RU2623832C1 |
Изобретение относится к ферромагнитным композиционным материалам. Способ получения ферромагнитного композита MnSb-GaMn-GaSb включает нагревание смеси порошков металлов с размером частиц не более 10 мкм, состоящей из 32-38 ат. % Mn, 32-42 ат. % Sb и 26-33 ат. % Ga, в бескислородной среде в графитизированной кварцевой ампуле или корундовом тигле со скоростью не выше 100°С/ч до температур 660-720°С, после чего проводят выдержку при этих температурах в течение 3-6 ч и охлаждение со скоростью 80-200°С/ч до температуры 20-25°С. Обеспечивается получение ферромагнитного композиционного материала, состоящего из двух ферромагнетиков с температурами Кюри Тс~330° и широкозонного полупроводника. 1 з.п. ф-лы, 2 пр., 1 табл., 4 ил.
1. Способ получения ферромагнитного композита MnSb-GaMn-GaSb, заключающийся в том, что смесь порошков металлов Mn, Sb и Ga с размером частиц не более 10 мкм, взятых в соотношениях 32-38 ат. % Mn, 32-42 ат. % Sb и 26-33 ат. % Ga, нагревают в бескислородной среде в графитизированной кварцевой ампуле или корундовом тигле со скоростью не выше 100°С/ч до температур 660-720°С, выдерживают при этих температурах в течение 3-6 ч, охлаждают со скоростью 80-200°С/ч до температуры 20-25°С с получением композита состава MnSb-GaMn-GaSb.
2. Способ по п. 1, отличающийся тем, что термическую обработку осуществляют в вакууме или в инертной среде.
ПАШКОВА О.Н | |||
и др | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Журнал неорганической химии, РАН, том 59, номер 11, 2014, с | |||
Рельсовая двусторонняя педаль | 1917 |
|
SU1324A1 |
Способ получения моноантимонида марганца | 1980 |
|
SU900983A1 |
Способ получения ферромагнитного композита AlSb-MnSb | 2017 |
|
RU2649047C1 |
US 20050141147 A1, 30.06.2005. |
Авторы
Даты
2019-09-23—Публикация
2018-12-07—Подача