Способ изготовления полупроводниковых датчиков давления Российский патент 2019 года по МПК H01L21/18 

Описание патента на изобретение RU2702820C1

Изобретение относится к технологии изготовления полупроводниковых приборов и может быть использовано для изготовления полупроводниковых датчиков давления, включающий полупроводниковый чувствительный элемент на основе структуры «кремний-на-сапфире».

Известен усовершенствованный способ изготовления преобразователей кремний-на-сапфире [Патент US 2001029087 А1], включающий в себя этапы: формирования первого кремниевого слоя на первой стороне первой сапфировой пластины; склеивание второй сапфировой пластины с первой стороной первой сапфировой пластины, так что первый слой кремния расположен между первой и второй сапфировыми пластинами; уменьшение толщины первой сапфировой пластины до заданной толщины; осаждение второго слоя кремния на вторую поверхность первой сапфировой пластины, причем вторая поверхность первой сапфировой пластины расположена противоположно от первой поверхности первой сапфировой пластины; связывание кремниевой пластины со второй поверхностью первой сапфировой пластины, так что второй слой кремния помещен между первой сапфировой пластиной и кремниевой пластиной, причем кремниевая пластина включает в себя области р +, указывающие на структуру преобразователя и не-р + области; и, удаляя не-р + области кремниевой пластины, формируя, таким образом, структуру преобразователя р + областей на второй поверхности первой сапфировой пластины.

Общим признаком аналога, совпадающим с существенными признаками заявляемого изобретения, является то, что чувствительный элемент выполнен на основе структуры «кремний на сапфире».

Недостатком данного способа является наличие большого количества технологических операций, влияющее на параметры работы полупроводникового датчика давления.

Наиболее близким техническим решением является способ изготовления полупроводниковых датчиков давления [Патент SU 835268], включающий выращивание маскирующего слоя двуокиси кремния на пластине кремния, его травление, формирование тензорезисторов, после, на обратной стороне пластины кремния располагают кристаллодержатели/ ковар, инвар, титан, керамика/, на поверхность которых методом центрифугирования из суспензии стеклопорошка, например, системы SiO22О3-Al2O3-RO при времени осаждения 5-7 мин и воздействии линейных перегрузок (1,5-2,0)⋅103g наносят слой стекловидного диэлектрика толщиной 6-9 мкм/ оплавление полученного слоя производят при температуре 900-950°С в течение 8-10 мин с последующим охлаждением со скоростью 3-5°С/мин, коэффициент линейного термического расширения /КЛТР/ которого согласован с КЛТР кристаллодержателя, спаивают вместе пластину кремния с кристаллодержателями, покрытыми стекловидным диэлектриком, при температуре не более 1000°С, формируют металлизацию на тензорезисторы и разделяют пластину кремния совместно с кристаллодержателями на отдельные модули с полупроводниковыми датчиками и приваривают выводы к контактным площадкам тензорезисторов.

Признаками прототипа, совпадающими с существенными признаками предлагаемого изобретения, является то, что полупроводниковый чувствительный элемент выполнен на основе структуры «кремний на сапфире», включающий в себя нанесение стекловидного диэлектрика методом центрифугирования.

Недостатком данного способа при массовом изготовлении является применение стекловидного диэлектрика системы SiO22О3-Al2O3-RO с высокой температурой оплавления, приводящее к снижению параметров надежности структуры.

Технический результат заключается в повышении параметров надежности и обеспечении долговременной стабильности параметров датчика давления за счет того, что полупроводниковый чувствительный элемент структуры «кремний на сапфире» соединен с керамической шайбой стекловидным диэлектриком системы PbO-В2О3-ZnO.

Для достижения технического результата предложен способ изготовления полупроводниковых датчиков давления, включающий полупроводниковый чувствительный элемент структуры «кремний на сапфире», соединенный с керамической шайбой стекловидным диэлектриком системы PbO-B2O3-ZnO, при этом коэффициент линейного термического расширения стекловидного диэлектрика согласован с коэффициентом линейного термического расширения сапфира и керамики, при времени осаждения стекловидного диэлектрика методом центрифугирования 3-5 мин., скорости вращения ротора центрифуги 7000 об/мин. и оплавлении полученного слоя при температуре 560-580°С.

На фиг. 1 изображена конструкция датчика давления, разработанного в рамках структуры «сапфир-стекловидный диэлектрик-керамика».

На фиг. 2 представлен пример технологического маршрута создания датчика давления на основе структуры «сапфир-стекловидный диэлектрик-керамика».

Способ изготовления полупроводниковых датчиков давления осуществляется следующим способом. Полупроводниковый чувствительный элемент выполнен на основе КНС. Пластины сапфира с ориентацией которые служат подложками для изготовления чувствительного элемента, перед осаждением слоев кремния отжигались при температуре 1400°С в течение 60 минут непосредственно в камере, что позволяет удалить с поверхности сапфира углеродные и кислородные загрязнения и обеспечивает высокое структурное совершенство приповерхностной области слоя Si. Осаждается слой поликристаллического кремния методом высокочастотного распыления. Проведена фотолитография для формирования резисторов. Травление слоев поликристаллического кремния методом избирательного анизотропного травления необходимо для последующего формирования контактов к резисторам.

Электрическая схема чувствительного элемента, имеет замкнутый измерительный мост. Контроль температуры здесь ведется по величине тока, протекающего через мостовую схему. Для подгонки измерительного моста и термокомпенсации в схему введена линейка подгоночных резисторов, включенных в противолежащие плечи моста и вынесенных на одну сторону кристалла. Это не только позволяет правильно сбалансировать схему, но также исключить возможность возникновения теплового разбаланса, так как все резисторы находятся в одинаковых условиях.

Керамика, которая использовалась как основа при производстве датчиков давления, уменьшает температурную погрешность преобразования из-за возможности лучшего согласования коэффициента линейного термического расширения (КЛТР) керамики (85-100×10-7 К-1) и сапфировой (60-75×10-7 К-1) подложки, позволяет уменьшить стоимость технологического процесса из-за использования керамики вместо дорогостоящих титановых сплавов и сложной металлообработки. Исходную керамическую основу разрезаем с помощью лазера с длиной волны 1064 нм, подвергаем ее очистке, после резки, шлифовки и полировки.

Полупроводниковый чувствительный элемент на основе КНС, применяя метод центрифугирования, соединяется с основанием корпуса из керамического материала с помощью стекловидного диэлектрика системы PbO-В2О3-ZnO с коэффициентом линейного термического расширения (КЛТР), равному 82-88×10-7 К-1, под воздействием температурного режима. Формирование отверстия в керамическом основании производится механическим методом.

В конструкции разработанного чувствительного элемента датчика давления контактные площадки, например, алюминиевые, вынесены из зоны измерений, при этом токоразводка до контактных площадок осуществляется в виде длинных линий коммутации, изготавливаемых из того же материала, что и контактные площадки. На фиг. 1 изображена конструкция датчика давления, разработанного в рамках структуры «сапфир-стекловидный диэлектрик-керамика», где 1 - сапфировая мембрана, 2 - отверстие, 3 - алюминий, 4 - поликристаллический кремний, 5 - полость, 6 - паяное соединение (стекловидный неорганический диэлектрик), 7 - керамическое основание.

На фиг. 2 представлен пример технологического маршрута создания датчика давления на основе структуры «сапфир-стекловидный диэлектрик-керамика».

На сапфировую подложку диаметром 76 мм, тщательно обработанную механической и химической полировкой, ориентированной в плоскости

осаждается слой поликристаллического кремния высокочастотным распылением. Толщина нанесенного слоя составляет примерно 5 мкм.

Технологическими особенностями изготовления чувствительного элемента преобразователя давления являются:

- получение слоев кремния на сапфировой подложке с использованием технологии высокочастотного распыления, что позволяет реализовать процесс осаждения химически и структурно упорядоченных слоев Si на инородную подложку, так как при высокотемпературном газофазном эпитаксиальном росте КНС-структур из-за значительного различия коэффициентов термического расширения кремния и сапфира (35⋅10-7 против 80⋅10-7 град-1) в слоях кремния при их росте возникают большие механические напряжения и это приводит к низкому качеству гетероэпитаксиальных слоев кремния: плотность дислокаций в слоях составляет 105-109 см-2.

- избирательное локальное травление слоев кремния по заданному топологическому рисунку, осуществляемое методом избирательного анизотропного травления кремния с помощью оксидной маски.

Следующим этапом проводилась фотолитография для формирования резисторов. Травление слоев поликристаллического кремния проводили методом избирательного анизотропного травления.

Последующей операцией является формирование контактов к резисторам. Напыление алюминия и фотолитография для формирования контактной металлизации и контактных площадок необходимо для присоединения тензорезистивной схемы к внешним выводам корпуса.

Для того чтобы вытравить необходимых размеров канавку, используем химически-стойкий лак, им изолируем нанесенный слой кремния и сформированные контактов, поскольку их необходимо оставить. Формирование сапфировой канавки осуществляется с использованием метода химического травления. Для профилирования сапфир травится в смеси кислот H2SO4 96% и Н3РО4 85% с использованием SiO2 маски, сформированной травлением в стандартном буферном травителе. Скорость травления сапфира составляет (0,6-0,8) м/ч. Температура подложки варьируется от 240 до 280°С.

Исходную керамическую подложку разрезаем с помощью лазера с длиной волны 1064 нм, подвергаем ее очистке, после резки, шлифовки и полировки. Для нанесения стекловидного диэлектрика методом центрифугирования первоначально происходит грануляция легкоплавкого неорганического диэлектрика системы PbO-В2О3-ZnO с удельной поверхностью 5000 см2/г (сухой помол). Для приготовления агрегативно устойчивой рабочей суспензии в полученный порошок добавляется изобутиловый спирт, в следующем соотношении 20 гр. порошка на 25 гр. спирта. Полученный раствор помещается в вибромельницу, в яшмовый барабан с яшмовыми шарами на 48 часов. Нанесение суспензии из легкоплавкого неорганического диэлектрика системы PbO-B2O3-ZnO на керамическую подложку осуществлялось методом центрифугирования в течение 3-5 минут при скорости вращения ротора на центрифуге ОПН-16 (Labtex) 7000 об/мин. Сушка равномерно нанесенной стекловидной диэлектрической пленки проводилась в термошкафу при температуре 50-60°С в течение 3-5 мин. Высокотемпературный отжиг осуществлялся в муфельной печи при Т<580°С, а для уменьшения механических напряжений была введена изотермическая выдержка продолжительностью 10 мин. при Т=320°С. Некристаллизующиеся стекловидные пленки легкоплавкого неорганического диэлектрика обладают хорошей адгезией к материалам подложек, согласованностью по коэффициенту линейно-термического расширения (КЛТР=82-88×10-7 К-1) между компонентами структуры и температурам их формирования, позволяющим получить наиболее равномерное по толщине и однородности стекловидное диэлектрическое покрытие.

Формирование отверстия в структуре «стекловидный диэлектрик-керамика» производится механическим методом. Проведение процесса очистки сформированных отверстий.

Следующим этапом сборки датчика давления является соединение чувствительного элемента с керамическим корпусом. Предварительно получив структуру «стекловидный диэлектрик-сапфир» системы PbO-B2O3-ZnO методом центрифугирования при скорости вращения ротора центрифуги 7000 об/мин в течение 3-5 мин. и при высокотемпературном отжиге в муфельной печи при Т<560-580°С продолжительностью 5-7 мин. сапфировый чувствительный элемент соединяется с основанием корпуса из керамического материала, посредством стекловидного диэлектрика системы PbO-B2O3-ZnO с помощью груза (массой 200 гр.), при Т<600°С и с выдержкой 5-7 минут.

В заключении происходит формирование электрических выводов к контактным площадкам тензопреобразователя давления, выводам корпуса, а также герметизация и корпусирование датчика давления.

Таким образом, структура «сапфир-стекловидный диэлектрик-керамика» показывает возможность повышения чувствительности датчика и снижения погрешности при расширении его функциональных возможностей, упрощении конструкции и повышении технологичности изготовления. Датчик давления на основе структуры КНС обладает высокой чувствительностью, стабильностью, практически не имеет механического гистерезиса, может работать в широком диапазоне температур от -60 до +350°С и при воздействии радиации.

Похожие патенты RU2702820C1

название год авторы номер документа
Стекловидный неорганический диэлектрик 2019
  • Малюков Сергей Павлович
  • Бондарчук Дина Алексеевна
  • Клунникова Юлия Владимировна
  • Саенко Александр Викторович
RU2711609C1
ДАТЧИК ДАВЛЕНИЯ 2009
  • Стефанович Владимир Алексеевич
  • Лебедев Георгий Борисович
  • Нелина Светлана Николаевна
RU2392592C1
СОСТАВ ЛЕГКОПЛАВКОГО СТЕКЛА ДЛЯ СКЛЕИВАНИЯ ОПТИЧЕСКИХ И ЛАЗЕРНЫХ ЭЛЕМЕНТОВ ИЗ МОНОКРИСТАЛЛОВ И КЕРАМИКИ АЛЮМОИТТРИЕВОГО ГРАНАТА И СПОСОБ СКЛЕИВАНИЯ ОПТИЧЕСКИХ И ЛАЗЕРНЫХ ЭЛЕМЕНТОВ ДАННЫМ СОСТАВОМ 2022
  • Бутенков Дмитрий Андреевич
  • Кроль Игорь Михайлович
  • Петрова Ольга Борисовна
RU2800277C1
Стекло для спаивания со сплавами алюминия 2020
  • Малюков Сергей Павлович
  • Ковалев Андрей Владимирович
  • Саенко Александр Викторович
  • Тимощенко Дмитрий Викторович
RU2771549C2
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОМЕХАНИЧЕСКИХ ПРИБОРОВ 1998
  • Лучинин В.В.
  • Корляков А.В.
RU2137249C1
СТЕКЛО 1995
  • Петрова В.З.
  • Чиликина Т.Д.
  • Воробьев В.А.
  • Чиликина М.В.
RU2081069C1
СПОСОБ ПОЛУЧЕНИЯ ЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА ДЛЯ ГАЗОВОГО ДАТЧИКА НА САПФИРОВОЙ ПОДЛОЖКЕ 2016
  • Малюков Сергей Павлович
  • Клунникова Юлия Владимировна
  • Саенко Александр Викторович
  • Бондарчук Дина Алексеевна
  • Буй Хай Тхань
RU2625096C1
АКТИВНЫЙ ЭЛЕМЕНТ ИЗ ИТТРИЙ-АЛЮМИНИЕВОГО ГРАНАТА, ЛЕГИРОВАННОГО НЕОДИМОМ, С ПЕРИФЕРИЙНЫМ ПОГЛОЩАЮЩИМ СЛОЕМ 2012
  • Бойко Раиса Михайловна
  • Шестаков Александр Валентинович
  • Шестакова Ирина Александровна
RU2516166C1
ТЕНЗОПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2005
  • Клитеник Олег Вадимович
  • Первушина Татьяна Федоровна
RU2293955C1
СВЕТОИЗЛУЧАЮЩЕЕ УСТРОЙСТВО, ПРИСОЕДИНЕННОЕ К ОПОРНОЙ ПОДЛОЖКЕ 2012
  • Бхат Джером Чандра
  • Акрам Салман
  • Стейджеруолд Дэниел Александер
RU2604956C2

Иллюстрации к изобретению RU 2 702 820 C1

Реферат патента 2019 года Способ изготовления полупроводниковых датчиков давления

Изобретение относится к технологии изготовления полупроводниковых приборов и может быть использовано для изготовления полупроводниковых датчиков давления. Технический результат изобретения заключается в повышении параметров надежности и обеспечении долговременной стабильности параметров датчика давления за счет того, что полупроводниковый чувствительный элемент структуры «кремний на сапфире» соединен с керамической шайбой стекловидным диэлектриком системы PbO-В2О3-ZnO. Способ изготовления полупроводникового датчика давления включает выполнение чувствительного элемента на основе структуры «кремний на сапфире» с нанесением стекловидного диэлектрика методом центрифугирования, при этом полупроводниковый чувствительный элемент структуры «кремний на сапфире» соединен с керамической шайбой стекловидным диэлектриком системы PbO-В2О3-ZnO, при этом коэффициент линейного термического расширения стекловидного диэлектрика согласован с коэффициентом линейного термического расширения сапфира и керамики, при времени осаждения стекловидного диэлектрика методом центрифугирования 3-5 мин, скорости вращения ротора центрифуги 7000 об/мин и оплавлении полученного слоя при температуре 560-580°С. 2 ил.

Формула изобретения RU 2 702 820 C1

Способ изготовления полупроводникового датчика давления, включающий выполнение чувствительного элемента на основе структуры «кремний на сапфире» с нанесением стекловидного диэлектрика методом центрифугирования, отличающийся тем, что, полупроводниковый чувствительный элемент структуры «кремний на сапфире» соединен с керамической шайбой стекловидным диэлектриком системы PbO-B2O3-ZnO, при этом коэффициент линейного термического расширения стекловидного диэлектрика согласован с коэффициентом линейного термического расширения сапфира и керамики, при времени осаждения стекловидного диэлектрика методом центрифугирования 3-5 мин, скорости вращения ротора центрифуги 7000 об/мин и оплавлении полученного слоя при температуре 560-580°С.

Документы, цитированные в отчете о поиске Патент 2019 года RU2702820C1

SU 835268 A1, 27.12.1999
ДАТЧИК ДАВЛЕНИЯ 2009
  • Стефанович Владимир Алексеевич
  • Лебедев Георгий Борисович
  • Нелина Светлана Николаевна
RU2392592C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ 2015
  • Казарян Акоп Айрапетович
RU2603446C1
ДАТЧИК ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ 2008
  • Казарян Акоп Айрапетович
  • Петроневич Василий Васильевич
  • Езеев Николай Андреевич
RU2384825C1
Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1

RU 2 702 820 C1

Авторы

Малюков Сергей Павлович

Клунникова Юлия Владимировна

Саенко Александр Викторович

Бондарчук Дина Алексеевна

Светличный Александр Михайлович

Тимощенко Дмитрий Викторович

Даты

2019-10-11Публикация

2019-01-25Подача