Установка нетепловой модификации полимеров в СВЧ электромагнитном поле Российский патент 2019 года по МПК H05B6/64 

Описание патента на изобретение RU2702897C1

Изобретение относится к области обработки полимерных материалов и изделий с помощью СВЧ энергии, а именно для нетепловой модификации физико-механических свойств полимерных материалов без явного нагрева объекта обработки или при незначительном нагреве (3-5°С) как в процессе изготовления полимерных изделий, так и уже готовых, и может быть использована в технологических процессах для модификации полимерных и композиционных материалов в строительстве, авиационной, химической промышленности и других областях народного хозяйства.

Известно устройство для обработки диэлектрических материалов в камере со стоячей волной, представляющей собой рабочую камеру, выполненную на волноводе, свернутом в кольцо, или собранной из линейных отрезков волновода сечением 45×90 мм, соединенных между собой с образованием замкнутого многогранника, систему загрузки-выгрузки обрабатываемого материала и транспортера в виде диэлектрического диска с малыми потерями (см. патент РФ на изобретение №2416891, МПК Н05В 6/64, опубл. 20.04.2011 г).

Недостатком конструкции данной установки является наличие стоячих волн, в предлагаемом способе и в конструкции самой установки не предусмотрена возможность загрузки для непрерывной обработки объектов, имеющих большую длину, отсутствие возможности измерить значения падающей, прошедшей, отраженной и поглощенной мощностей.

Известна также конструкция устройства термообработки материалов и изделий в электромагнитном СВЧ-поле, заключающаяся в том, что объект термообработки протягивают через узкие продольные щели, пропускают электромагнитные СВЧ-волны через волноводные отрезки. Достигается это тем, что электромагнитные СВЧ-волны через соответствующие волноводные отрезки пропускают одновременно в прямом и обратном направлении через объект обработки с измененной плоскостью поляризации, отраженными от установленных трансформаторов поляризации, расположенных на концах соответствующих волноводных отрезков. Вышеупомянутое устройство содержит СВЧ-генератор, на выходе из которого установлен волноводно-коаксиальный переход, волноводные отрезки, в которых выполнены узкие продольные щели, экран, установленный между волноводными отрезками, ферритовые вентили, установленные на входе первого и последнего волноводных отрезков, ловушки СВЧ энергии на входе первого и на выходе последнего волноводных отрезков, делитель мощности, волноводные переходы, трансформаторы поляризации, дополнительные ферритовые вентили, установленные на входе волноводных отрезков со второго до последнего, причем волноводные отрезки соединены параллельно, их входы через ферритовые вентили и волноводные переходы подключены к соответствующим выходам делителя мощности, вход которого соединен с выходом волноводно-коаксиального перехода, выходы волноводных отрезков соединены с соответствующими трансформаторами поляризации (см. патент РФ на изобретение №2241318, МПК Н05В 6/64, опубл. 27.11.2004 г.).

Однако недостатком данного способа является его сложность конструкции, возможность обработки только тонких диэлектриков в электромагнитном СВЧ поле, подразумевающим непосредственный нагрев, а не нетепловую модификацию полимеров с малыми диэлектрическими потерями.

Наиболее близкой к предлагаемому изобретению является СВЧ установка для сушки проявленной кинопленки, рабочая камера которой работает в режиме бегущей волны (КБВ) [1, 2, с. 193] и выполненная на прямоугольном волноводе сечением 45×90 мм, причем камера КБВ встречного типа, т.е. объект перемещается навстречу распространяющейся электромагнитной волне внутри рабочей камеры. Конструктивно, СВЧ генератор и источник питания выполнены раздельно, и электрически соединяются между собой соединительными электрическими кабелями, для отсутствия провисания кинопленки в конструкции рабочей камеры предусмотрены фторопластовые ролики, которые обеспечивают перемещение кинопленки в средней части широкой стенки прямоугольного волновода КБВ, где наблюдается наибольшее значение электрической напряженности электромагнитной волны. В одной из узких стенок входного фланца первого волноводного узла и у выходного фланца последнего узла, порезаны узкие поперечные щели, через которые кинопленка подается в рабочую камеру КБВ и выходит из нее.

Недостатком конструкции данной установки является возможность обработки только тонких диэлектриков, подразумевающим непосредственный нагрев, а именно сушку, сложность в изготовлении и размещении фторопластовых поддерживающих роликов внутри у волноводных отрезков КБВ.

Техническая проблема настоящего изобретения заключается в необходимости осуществления нетепловой модификации физико-механических свойств полимерных материалов без явного нагрева объекта обработки или при незначительном нагреве (3-5°С) как в процессе изготовления полимерных изделий, так и уже готовых, осуществляя СВЧ обработку в максимальной зоне однородности электрического поля.

Поставленная проблема решается путем методичной (непрерывной) обработки полимерных материалов в СВЧ поле, которые перемещаются внутри рабочей камеры КБВ на ленточном конвейере из радиопрозрачного материала в области однородной напряженности E электрического поля электромагнитной волны (посередине широких стенок волновода). Величина рабочего участка по высоте рабочей камеры КБВ составляет 0,1⋅a, где a=90 мм - размер широкой стенки волновода рабочей КБВ. Полимерный объект обработки, находящийся в твердом сыпучем, или жидком состоянии размещаемый в прямоугольных радиопрозрачных кюветах на конвейере, перемещаются встречно направлению распространения электромагнитной волны. Для отсутствия провисания конвейера внутри рабочей КБВ посередине протянута дополнительно радиопрозрачная лента, которая закрепляется с двух сторон на входе и выходе защитных шлюзов. Конструкция крепежа данной ленты позволяет регулировать ее натяжение. Лента выполняет роль направляющей опоры скольжения, по которой скользит конвейерная лента. Такая конструкция позволяет уйти от использования ранее упомянутых поддерживающих роликов. Время СВЧ обработки объекта задается скоростью движения транспортной ленты, величина генерируемой мощности устанавливается по величине анодного тока магнетрона и величине ослабления переменного аттенюатора. СВЧ воздействие на объект обработки осуществляется при постоянном уровне генерируемой мощности Р и продолжительности процесса СВЧ воздействия. В процессе работы измеряются уровни падающей мощности Pпад, отраженной мощности Pотр. Прошедшая мощность Pпрош, не поглощенная объектом обработки, через рабочую камеру измеряется калориметрическим методом в оконечной калориметрической нагрузке.

Предлагаемое изобретение поясняется схемой: на Фиг. 1. представлена структурная схема установки с рабочей камерой КБВ для реализации нетепловой модификации полимерного материала в электромагнитном СВЧ поле (электропривод конвейера и пульт управления установкой на схеме не показаны), Фиг. 2 - конструкция рабочей камеры КБВ в разрезе, где:

1 - рабочая камера КБВ, выполненная на прямоугольном волноводе с конвейерной лентой;

2 - защитные шлюзовые повороты;

3 - направленные ответвители падающей и отраженной мощности

4 - аттенюатор;

5 - ферритовый вентиль;

6 - генератор СВЧ энергии;

7 - калориметрическая нагрузка для измерения прошедшей мощности,

8 - конвейерная лента,

9 - направляющая лента

10 - модифицируемый объект.

Выше перечисленные основные узлы с поз. 1 по поз. 6 выполнены на базе прямоугольных волноводных линий, с внутренним сечением рабочего окна 45 мм × 90 мм, соединяясь между собой через фланцевые торцевые части при помощи соединения болт-гайка, тем самым обеспечивая монолитность и законченность конструкции. Для обеспечения более прочного соединения в конструкции предусмотрены дополнительные стопорные шайбы. Указанные позиции закреплены на металлических направляющих, стойках и кронштейнах (на схеме они не показаны) в своих рабочих положениях.

Установка нетепловой модификации полимеров в СВЧ электромагнитном поле содержит рабочую камеру КБВ (1), выполненную виде отрезка прямоугольного волновода сечением 45 мм × 90 мм длиной 1 м с защитными шлюзовыми поворотами (2) на его концах, которые позволяют пропускать материал толщиной от десятых долей миллиметра до величины, равной 0,1⋅a, где a=90 мм - это величина широкой стенки прямоугольного волновода. Рабочая камера КБВ (1) расположена таким образом, что широкая стенка волноводной секции находится в вертикальном положении, а узкая часть - в горизонтальном. Внутри волновода рабочей камеры КБВ (1), в средней части (Фиг. 2.) перемещается радиопрозрачная конвейерная лента (8) поверх другой ленты (9), которая выполняет функцию направляющей опоры, по которой скользит конвейерная лента (8), Скорость конвейерной ленты (8) задают и варьируют на пульте управления в диапазоне 0÷10 м/мин.. Модифицируемый объект (10) размещают на конвейерной ленте (8). При таком расположении модифицируемый объект (10) перемещаясь внутри рабочей камеры КБВ (1) находится в области наибольшей однородности электрической напряженности электромагнитного поля, и толщина модифицируемого полимера может варьироваться от десятых долей миллиметра до величины, равной 0,1⋅a, где a - это величина широкой стенки прямоугольного волновода.

Генератор СВЧ энергии (6) собран на магнетроне М-147 с максимальной мощностью 3 кВт и частотой 2450 МГц. Он снабжен выпрямителем и фильтром, что позволяет обеспечить устойчивый непрерывный режим работы магнетрона.

Для обеспечения надежной работы магнетрона (стабильная выходная мощность, отсутствие затягивания частоты) на выходе магнетрона установлен ферритовый вентиль (5), развязывающий генератор СВЧ (6) и рабочую камеру КБВ (1) по отраженной волне.

Для получения плавной регулировки подаваемой мощности в рабочую СВЧ камеру (1) установлен аттенюатор (4), собранный на прямоугольных волноводах сечением 45 мм × 90 мм.

На входе в рабочую камеру установлены направленные ответвители (3) для измерения падающей и отраженной мощности.

К повороту на выходе рабочей камеры подключается калориметрическая нагрузка (7) на прямоугольном волноводе сечением 45×90 мм, позволяющая измерять прошедшую через рабочую камеру мощность калориметрическим методом [1, 2]

где Pпрош в Вт, G - расход воды, л/мин; ΔT - разность температур на входе и выходе гидравлической системы калориметрической нагрузки.

Для проведения измерений установка снабжена водным расходомером, термопарами, измеряющими температуру на входе и на выходе балластной калориметрической нагрузки с соответствующей системой индикации в диапазоне от 0 до 100°С.

Установка нетепловой модификации полимеров в СВЧ электромагнитном поле работает следующим образом: СВЧ мощность от генератора СВЧ энергии (6) проходит через ферритовый вентиль (5) и поступает на аттенюатор (4), с которого далее поступает через измерители падающей и отраженной мощности (3), шлюзовой поворот (2) в рабочую камеру КБВ (1), где происходит процесс модификации полимера. В рабочую камеру КБВ (1) модифицируемый объект (10) подают по конвейеру в радиопрозрачных кюветах 40×50×6 мм, в более длинных радиопрозрачных кюветах или на радиопрозрачных диэлектрических подложках длиной до 1 м, в зависимости от своего агрегатного состояния. Наличие аттенюатора (4), а также возможности установки минимального значения генерируемой мощности по току анода магнетрона и регулирование скорости конвейера позволяют осуществлять процесс нетепловой модификации (нагрев не более 3-5°С). Проходя через входной шлюз (всю длину рабочей камеры КБВ (1), модифицируемый материал (10) находится в зоне наибольшей однородности распределения электрической напряженности электромагнитного поля на конвейерной ленте (8), которая перемещается по направляющей ленте (9) одновременно опираясь и скользя по ней на всей длине рабочего участка рабочей камеры КБВ (1), благодаря своему такому размещению в пространстве (см. Фиг. 2). В процессе СВЧ обработки осуществляют снятие показаний по индикаторам значений падающей мощности Pпад и отраженной мощности Ротр (2). Значения прошедшей мощности определяют калориметрическим методом при определении разности температур в оконечной калориметрической балластной нагрузке (7), а также по показаниям расходомера охлаждающей воды. Время подачи СВЧ мощности фиксируют по имеющемуся на пульте управления таймеру, также на данном пульте снимают разности показаний температур калориметрической балластной нагрузки и осуществляют регулировку и контроль за установленной скоростью конвейера. Наличие калориметрической балластной нагрузки позволяет проводить процессы модификации полимеров имеющих малые диэлектрические потери в режиме максимально приближенном к режиму КБВ, а ферритовый вентиль обеспечивает защиту магнетрона от больших значений отраженных СВЧ мощностей.

Таким образом, модифицируемый объект, размещаясь на конвейерной ленте и перемещаясь внутри рабочей камеры КБВ, находится в области наибольшей однородности электрической напряженности электромагнитного поля.

Источники информации

1. Архангельский Ю.С. СВЧ электротермия / Архангельский Ю.С. - Саратов: СГТУ, 1998. - С. 408.

2. Архангельский Ю.С. Справочная книга по СВЧ электротермии: справочник / Ю.С. Архангельский. - Саратов: Изд-во «Научная книга», 2011. - 560 с.

Похожие патенты RU2702897C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ МОДИФИКАЦИИ ВЯЗКОТЕКУЧИХ НАПОЛНЕННЫХ ОЛИГОМЕРОВ В СВЧ ЭЛЕКТРОМАГНИТНОМ ПОЛЕ 2024
  • Васинкина Екатерина Юрьевна
  • Сивак Антон Сергеевич
  • Калганова Светлана Геннадьевна
  • Кадыкова Юлия Александровна
  • Тригорлый Сергей Викторович
  • Сивак Татьяна Павловна
RU2824174C1
СПОСОБ СВЕРХВЫСОКОЧАСТОТНОЙ ТЕПЛОВОЙ И НЕТЕПЛОВОЙ ОБРАБОТКИ СЫРЬЯ 2021
  • Тухватуллин Мидхат Ильфатович
RU2794529C1
СПОСОБ УПРОЧНЕНИЯ АРМИРОВАННЫХ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2021
  • Злобина Ирина Владимировна
  • Бекренев Николай Валерьевич
RU2787880C1
Способ улучшения функциональных свойств резинотехнических изделий обработкой в СВЧ электромагнитном поле 2018
  • Злобина Ирина Владимировна
  • Бекренев Николай Валерьевич
RU2687937C1
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ УПРОЧНЕНИЯ АРМИРОВАННЫХ УГЛЕРОДНЫМ ВОЛОКНОМ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ СОВМЕСТНЫМ ВОЗДЕЙСТВИЕМ МИКРОВОЛНОВОГО ИЗЛУЧЕНИЯ И УЛЬТРАЗВУКА 2018
  • Злобина Ирина Владимировна
  • Бекренев Николай Валерьевич
RU2684378C1
ВОЛНОВОДНЫЙ СВЕРХУЗКОПОЛОСНЫЙ ФИЛЬТР СВЧ-ДИАПАЗОНА 2023
  • Комаров Вячеслав Вячеславович
  • Лукьянов Марат Айдынович
RU2806696C1
Способ формирования изделий путем трехмерной послойной печати с воздействием СВЧ электромагнитного поля и ультразвука 2017
  • Злобина Ирина Владимировна
  • Бекренев Николай Валерьевич
RU2676989C1
СПОСОБ ОБРАБОТКИ ЗЕРНОВЫХ ПРОДУКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Морозов Олег Александрович
  • Морозов Александр Олегович
  • Требух Валерий Петрович
  • Прокопенко Александр Валерьевич
  • Миронов Григорий Иванович
RU2572033C1
СВЧ-ПЕЧЬ 2014
  • Коломейцев Вячеслав Александрович
  • Лойко Виталий Анатольевич
  • Кузьмин Юрий Александрович
  • Семёнов Александр Эдгарович
RU2581689C2
Универсальный микроволновый комплекс для переработки каустобиолитов 2023
  • Крапивницкая Татьяна Олеговна
  • Ананичева Светлана Андреевна
  • Вихарев Александр Анатольевич
  • Песков Николай Юрьевич
  • Глявин Михаил Юрьевич
  • Зеленцов Сергей Васильевич
RU2816575C1

Иллюстрации к изобретению RU 2 702 897 C1

Реферат патента 2019 года Установка нетепловой модификации полимеров в СВЧ электромагнитном поле

Изобретение относится к области техники СВЧ, а именно к СВЧ обработке материалов. Установка нетепловой модификации полимеров в СВЧ электромагнитном поле содержит рабочую камеру КБВ, выполненную виде отрезка прямоугольного волновода сечением 45 мм × 90 мм длиной 1 м с защитными шлюзовыми поворотами на его концах, расположенную в пространстве таким образом, что широкая стенка волноводной секции находится в вертикальном положении, а узкая часть - в горизонтальном, внутри рабочей камеры КБВ в средней части перемещается радиопрозрачная конвейерная лента по поверхности другой радиопрозрачной ленты, которая выполняет функцию направляющей опоры, модифицируемый объект размещается на конвейерной ленте так, что находится в области наибольшей однородности электрической напряженности электромагнитного поля, и толщина модифицируемого полимера может варьироваться от десятых долей миллиметра до величины, равной 0,1⋅a, где a - это величина широкой стенки прямоугольного волновода. Технический результат - возможность осуществления нетепловой модификации физико-механических свойств полимерных материалов. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 702 897 C1

1. Установка нетепловой модификации полимеров в СВЧ электромагнитном поле отличающаяся тем, что содержит рабочую камеру бегущей волны, выполненную в виде отрезка прямоугольного волновода с защитными шлюзовыми поворотами на его концах, а также с входным и выходным отверстиями в защитных шлюзовых поворотах, пространственно расположенную так, что широкая стенка волноводной секции находится в вертикальном положении, а узкая - в горизонтальном; радиопрозрачную конвейерную ленту, выполненную с возможностью перемещения по поверхности другой натянутой радиопрозрачной ленты, выполняющей функцию направляющей опоры, в средней части внутреннего пространства рабочей камеры.

2. Установка нетепловой модификации полимеров в СВЧ электромагнитном поле по п. 1, отличающаяся тем, что размеры входного и выходного отверстий в защитных шлюзовых поворотах позволяют обрабатывать модифицируемый полимер толщиной от десятых долей миллиметра до величины, равной 0,1⋅а, где a - это величина широкой стенки прямоугольного волновода.

3. Установка нетепловой модификации полимеров в СВЧ электромагнитном поле по п. 1, отличающаяся тем, что содержит направленные ответвители и оконечную калориметрическую нагрузку, выполненные с возможностью проведения измерения и расчета значений падающей, отраженной и прошедшей мощностей.

Документы, цитированные в отчете о поиске Патент 2019 года RU2702897C1

АРХАНГЕЛЬСКИЙ Ю.С., Справочная книга по СВЧ электротермии: справочник, Саратов, Научная книга, 2011, с.193
СВЧ УСТАНОВКА ДЛЯ ОБРАБОТКИ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ 2010
  • Сивяков Борис Константинович
  • Слаповская Юлия Петровна
RU2416891C1
СПОСОБ ТЕРМООБРАБОТКИ ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА В ЭЛЕКТРОМАГНИТНОМ СВЧ-ПОЛЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Анфиногентов В.И.
  • Гараев Т.К.
  • Морозов Г.А.
RU2241318C1
Устройство для протирания поверхностей 1957
  • Михайлов П.М.
SU110891A1
US 2011180991 A1, 26.05.2011
US 5977532 A1, 02.11.1999.

RU 2 702 897 C1

Авторы

Калганова Светлана Геннадьевна

Лаврентьев Владимир Александрович

Алексеев Вадим Сергеевич

Васинкина Екатерина Юрьевна

Сивак Антон Сергеевич

Даты

2019-10-14Публикация

2018-12-28Подача