Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)xOy на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного воздействия.
Титановые сплавы, широко применяемые в приборо- и машиностроении, характеризуются низкой износостойкостью. Для повышения срока службы, поверхность титановых изделий упрочняют в процессе термической, химико-термической обработки или нанесением высокопрочных покрытий. Термической обработкой сложно значительно упрочнить поверхность титана. Химико-термическая обработка позволяет повысить коррозионную стойкость, твердость поверхности титана, а также снизить ее коэффициент трения. Широко используются методы формирования функциональных покрытий на титане: электрохимические, CVD, PVD. Указанные методы упрочнения характеризуются длительностью, себестоимостью процесса или его токсичностью. Методы газотермического напыления характеризуются высокой производительностью и позволяют наносить покрытия из тугоплавких материалов (WC, TiC, Мо2С, ТаС, NbC, Cr3C2, Аl2О3) [Heimann R.В. Applications of plasma-sprayed ceramic coatings // Key Engineering Materials. - 1996. - V. 122-124. - P. 399-442.]. Газотермические напыленные покрытия характеризуются наличием дефектов и низкой адгезией. Дефекты устраняются технологически сложными и длительными процессами.
Наибольшее распространение получили PVD, CVD и газотермические напыленные покрытия на основе нитридов, карбидов, боридов и карбонитридов Ti, Та, W и Zr. Указанные соединения в большинстве случаев более твердые и износостойкие чем оксиды данных металлов. При высоких температурах в кислородосодержащих средах оксидные соединения более стабильны, чем карбиды и нитриды. TiN, в зависимости от концентрации кислорода в окружающей среде, начинает окисляться при 350 и интенсивно с 850°С [Tompkins H.G. The initial stages of the oxidation of titanium nitride // Journal of Applied Physics. - 1992. - V.2. - N.71. P. 980-983.]. TiC начинает окисляется на воздухе при температуре свыше 700°С [Voitovich R.F., Pugach Е.А. High-temperature oxidation of titanium carbide // Soviet Powder Metallurgy and Metal Ceramics. - 1972. - V.2. - N.11. - P. 132-136]. ZrC окисляется при температуре более 500°С [Kuriakose А.К., Margrave J.L. The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures // Journal of The Electrochemical Society. - 1964. - V.7. - N.111. - P. 827-831.]. Следовательно на поверхности титановых изделий, работающих в нагретых кислородосодержащих средах, предпочтительнее формировать оксидные покрытия, что способствует поиску новых путей решения имеющейся проблемы.
Известен способ нанесения теплозащитного эрозионно-стойкого покрытия [патент RU на изобретение №2260071 / Л.Х. Балдаев, В.А.Лупанов, Н.Г. Шестеркин, А.П. Шатов, Г.И. Зубарев, М.М. Гойхенберг // Способ нанесения теплозащитного эрозионно-стойкого покрытия. - 2005]. На поверхность изделия напыляется металлический подслой из сплава на никелевой основе толщиной 60-80 мкм. Затем наносится керамическое покрытие из оксида циркония, стабилизированного оксидом иттрия, путем послойного плазменного напыления порошков фракцией 20-60 и 5-20 мкм. Формируемое слоистое керамическое покрытие характеризуется пористостью, уменьшающейся по поперечному сечению к верхнему слою. Пористость, верхнего слоя составляет <1%.
Основными недостатками способа являются высокие значения энергозатрат процесса плазменного напыления, стоимости и расхода порошкового материала, а также технологическая сложность формирования локальных участков покрытия.
Известен также способ получения на титане и его сплавах покрытий, содержащих оксид циркония [патент RU на изобретение №2323278 / B.C. Руднев, Т.П. Яровая, К.Н. Килин // Способ получения на титане и его сплавах покрытий, содержащих оксид циркония. - 2008]. Согласно способу электрохимическая обработка изделия из титана или его сплава проводится в водном электролите, содержащем 20-50 г/л сульфата циркония Zr(SO4)2⋅4H2O в гальваностатическом режиме при эффективной плотности тока 5-30 А/дм2 и напряжении формирования 80-180 В в течение 5-30 мин. В результате обработки на поверхности титана формируется покрытие состоящее на 70% из диоксида циркония в кристаллической и моноклинной модификациях, а также диоксида титана. По данным микрозондового рентгеноспектрального анализа, покрытие содержит, в ат.%: Zr - 22,1; Ti - 10,3 и О - 67,3, что соответствует стехиометрии соединений ZrO2 и TiO2.
Основными недостатками способа являются: токсичность используемого электролита; длительность процесса формирования покрытия; технологическая сложность формирования локального покрытия на поверхности изделия.
Наиболее близким к предлагаемому способу является способ формирования наноструктурированного оксидного покрытия на техническом титане [патент RU на изобретение №2650221 / А.А. Фомин, М.А. Фомина, И.В. Родионов, В.А. Кошуро // Способ формирования наноструктурированного оксидного покрытия на техническом титане. - 2017.] Способ включает электроискровое легирование титановой основы танталом и термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере. Электроискровое легирование титановой основы танталом осуществляется при плотности тока 250-800 кА/м2. Затем проводиться термодифицирующая обработка при температуре 950-1000°С в течении 0,25-0,5 минут и частоте тока на индукторе 90±10 кГц, потребляемой удельной электрической мощности 0,2-0,4 Вт/кг. Охлаждение изделий происходит на воздухе. В результате на поверхности титановых изделий различного назначения формируются покрытия системы Ti-Ta-(Ti,Ta)xOy с размером структурных элементов от 30 до 120 нм. Данные покрытия характеризуются твердостью 10-11,5 ГПа при величине модуля упругости 400-550 ГПа.
Основным недостатком способа является то, что указанные режимы электроискровой обработки и последующей термической обработки не подходят для формирования цирконий содержащих оксидных покрытий на титановых сплавах.
Техническая проблема заключается в необходимости создания технологически простого и производительного способа, позволяющего локально на поверхности титановых изделий формировать цирконий содержащее оксидное покрытие.
Поставленная проблема решается тем, что в способе формирования цирконий содержащего оксидного покрытия на титановых сплавах, включающем электроискровое легирование титановой основы и последующую термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере, после электроискрового легирования цирконием при плотности переменного тока 0,6-1,9 А/мм2 проводят термомодифицирующую обработку при частоте тока на индукторе 90±10кГц, температуре 1000-1200°С в течении 1-10 секунд, затем охлаждают на воздухе.
Техническим результатом является формирование на поверхности титановых изделий различного назначения локальных покрытий системы Ti-Zr-(Ti,Zr)xOy, характеризуемых твердостью 10±0,3 ГПа, размером структурных элементов 4-9 мкм и открытой пористостью до 54%.
Изобретение поясняется фигурами, на которых представлены: морфология поверхности покрытия, сформированного электроискровым легированием (ЭИЛ) цирконием при плотности тока 0,6±0,01 А/мм2 (Фиг. 1 а,) и 1,9±0,01 А/мм2 (Фиг. 1 б); морфология цирконий содержащих покрытий, сформированными при плотности тока 0,6±0,01 и 1,9±0,01 А/мм2 и последующей термической модификацией (ИТО) путем индукционного нагрева до температуры 1000±1°С при частоте тока на индукторе 90±10 кГц и выдержки в течение 1 секунды (соответственно Фиг. 2. а и Фиг. 2. б); морфология покрытий, сформированных электроискровым легированием цирконием при 0,6±0,01 А/мм2 и последующей термической модификацией путем индукционного нагрева до температуры 1000±1°С (Фиг. 3. а), а также при плотности тока 1,9±0,01 А/мм и выдержке 10 секунд при температуре 1200°С (Фиг. 3. б).
Предлагаемый способ осуществляют следующим образом.
К изделию из титанового сплава подключают электрод, затем подводят цирокниевый электрод-инструмент. Электроды инструмент и изделие подключают к источнику переменного тока из расчета, что плотность тока на циркониевом электроде составляет величину 0,6-1,9 А/мм2. Осуществляют электроискровое легирование титановой основы и последующую термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере, для этого на поверхность изделия переносится цирконий, образующий закристаллизовавшиеся частицы - сплэты. В процессе последующей обработки из сплэтов формируется цирконий содержащее покрытие (Фиг. 1 а и б). Затем изделие помещают в керамическую камеру, повторяющую форму изделия, на внешней поверхности которой размещен водоохлаждаемый индуктор, подключенный к источнику питания. После чего осуществляют термомодифицирующую обработку, для этого изделие подвергают индукционному нагреву при частоте тока на индукторе 90±10кГц до температуры 1000-1200°С, последующей выдержке в течение 1-10 секунд и охлаждению на воздухе. В результате на поверхности изделия образуется оксидное покрытие с гетерогенной поверхностью (Фиг. 2 и 3).
Технологические режимы электроискрового легирования и последующей термической модификации были определены путем проведения экспериментальных исследований. Приведенные предельные значения технологических режимов обеспечивают формирование на титановых сплавах оксидного покрытия системы Ti-Zr-(Ti,Zr)xOy с гетерогенной поверхностью.
Предельные значения плотности переменного тока при электроискровой обработке обусловлены тем, что величина плотности тока влияет на массоперенос, микрорельеф, состав и твердость формируемых покрытий. Так при плотности тока менее 0,6 А/мм2 снижается производительность процесса, а после термомодифицирующей обработки данные покрытия переходят в окалину. При плотности тока более 1,9 А/мм2 происходит значительное окисление поверхности покрытия, снижается массоперенос циркония.
При подаче на индуктор тока частотой менее 80 кГц снижается электрический коэффициент полезного действия устройства индукционного нагрева и самого процесса обработки. При подаче на индуктор тока частотой более 100 кГц не происходит улучшение эффективности процесса обработки и наблюдается снижение коэффициента мощности.
При значениях температуры нагрева менее 1000°С и продолжительности процесса термомодифицирующей обработки менее 1 секунд производительность процесса окисления циркония незначительна. При значениях температуры нагрева более 1200°С и продолжительности термообработки более 10 секунд происходит образование значительного слоя окалины, в которую переходит циркониевое покрытие.
Примеры выполнения способа.
Пример 1. Диск диаметром 14 мм и высотой 2 мм из титана ВТ1, предварительно очищенный от технологических загрязнений, закреплялся в трехкулачковом патроне токарного станка к которому подключался скользящий электрод. Электрод инструмент с циркониевым расходным электродом фиксировался в резцедержателе. Процесс нанесения покрытия имитировал процесс подрезания торца. Материал переносился при плотности переменного тока 0,6±0,01 А/мм2. Затем титановый диск помещался в керамическую камеру оксидирования. Термическое оксидирование производили путем бесступенчатого индукционного нагрева при частоте тока на индукторе 100±20кГц до температуры 1000°С, выдержка составляла 1 секунду. Затем титановую основу с покрытием постепенно охлаждали в камере до температуры 100°С и ниже.
Пример 2. Цилиндр диаметром 14 мм и длиной 30 мм из титана ВТ1, предварительно очищенный от технологических загрязнений, закреплялся в трехкулачковом патроне токарного станка к которому подключен электрод. Электрод инструмент с циркониевым расходным электродом фиксировался в резцедержателе. Процесс формирования покрытия имитировал процесс точения, следовательно покрытие формировалось на боковой поверхности цилиндра. Плотность тока при электроискровой обработке составляла 1,9 А/мм2. После формирования цирконий содержащего покрытия, титановый цилиндр помещали в керамическую камеру оксидирования. Индукционная химикотермическая модификация проводилась путем нагрева при частоте тока на индукторе 100±20 кГц. Нагрев проводился до температуры 1200°С, производилась выдержка в течении 10 секунд. После выдержки, титановую основу охлаждали в керамической камере до температуры 100°С.
Для подтверждения формирования на поверхности технического титана цирконий содержащих оксидных покрытий в результате обработки, описанной в предложенном способе, были проведены исследования морфологии и состава, а также измерения твердости. Исследовались образцы из титанового сплава ВТ1-0 с оксидными покрытиями, сформированными по способам, описанному в примерах 1 и 2. Морфология покрытий изучалась методом растровой электронной микроскопии (РЭМ) на электронном микроскопе «MIRA II LMU». Величина открытой пористости, линейные размеры зерен и дефектов покрытия определялись с использованием программного обеспечения «Metallograph» по РЭМ-изображениям полученным при увеличении 5 kx. Площадь анализируемых участков составляла 825 мкм2.
Элементный состав покрытий определялся методом энергодисперсионного рентгенофлуоресцентного анализа (погрешность концентраций ±0,5 ат. %) на электронном микроскопе «MIRA II LMU» детектором «INCA PentaFETx3». Микротвердость измеряли с использованием микротвердомера «ПМТ-3М» при нагрузке на индентор 100 гс, согласно требованиям известных нормативных документов (ГОСТ 9450 -76, ISO 6507-1:2005).
Сформированные при плотности переменного тока 0,6 А/мм2 покрытия состояли из отдельных частиц, которые неравномерно распределены по основе (Фиг. 1, а). Циркония перенеслось на поверхность 21,8 ат. %, 46 ат. % в покрытии титан. Покрытие характеризовалось также наличием на поверхности сплэтов сферических элементов размером 7,8±3,9 мкм. При этом пористость составляла 48%, а средний размер пор 5,3±4,4 мкм.
Увеличение плотности тока до 1,9 А/мм2 привело к более плотному распределению частиц по подложке (Фиг. 1, б). Перенос циркония не увеличился, его содержание составило 21,9 ат. %. Содержание кислорода увеличилось до 39,7 ат. %. Размер отдельных кристаллов и пор уменьшился до 6,6±3,2 и 4,4±3,9 мкм соответственно. Открытая пористость возросла до 52%.
Проведение термомодификации при 1000°С длительностью 1 секунда не влияло на макроморфологию покрытий (Фиг. 2, а, б). В покрытиях сформированных при 0,6 А/мм2 после термомодифицирующей обработки содержание кислорода составляло 51,2 ат. %, а циркония 3,8 ат. %. Пористость покрытия составляла 52%. Средние размеры структурных элементов: зерна - 8,81±4 мкм; поры - 5,8±5 мкм (Фиг. 3. а).
Покрытия сформированные при плотности переменного тока 1,9 А/мм2, температуре обработки 1200°С и длительности 10 секунд характеризовались зернами, со средним размером до 6,3±3 мкм и порами размером 4,7±4 мкм (Фиг. 3, б). Пористость покрытия составляла 58%. Содержание циркония в покрытие составляло 1,1 ат. %.
Результаты измерения твердости покрытий, сформированных электроискровым легированием цирконием титановой основы и последующей индукционной термомодифицирующей обработкой, представлены в таблице.
Согласно анализу состава и измерениям твердости сформированные покрытия являлись оксидными. Из полученных результатов следует, что предложенный способ позволяет формировать твердые, высокопористые цирконий содержащие оксидные покрытия системы Ti-Zr-(Ti,Zr)xOy на изделиях из сплавов титана.
название | год | авторы | номер документа |
---|---|---|---|
Способ формирования покрытия на штамповых сталях | 2020 |
|
RU2746518C1 |
Способ формирования наноструктурированного оксидного покрытия на техническом титане | 2017 |
|
RU2650221C1 |
Способ формирования на быстрорежущей стали покрытия системы титан - оксиды титана | 2022 |
|
RU2789262C1 |
Способ формирования оксидных покрытий на изделиях из циркониевых сплавов | 2017 |
|
RU2647048C1 |
СПОСОБ ФОРМИРОВАНИЯ ОКСИДНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ ТИТАНОВЫХ СПЛАВОВ | 2015 |
|
RU2611617C1 |
Способ формирования металлооксидных пористых покрытий на титановых изделиях | 2022 |
|
RU2781873C1 |
Способ химико-термического упрочнения малогабаритных изделий из технического титана | 2018 |
|
RU2690067C1 |
Способ формирования титановых пористых покрытий на титановых имплантатах | 2017 |
|
RU2647968C1 |
СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРИРОВАННОГО БИОИНЕРТНОГО ПОКРЫТИЯ НА ТИТАНОВЫХ ИМПЛАНТАТАХ | 2015 |
|
RU2604085C1 |
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ИНДУКЦИОННОЙ ОБРАБОТКИ МАЛОГАБАРИТНЫХ ИЗДЕЛИЙ ИЗ АЛЬФА-ТИТАНОВЫХ СПЛАВОВ | 2015 |
|
RU2623979C2 |
Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)xOy на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного воздействия. Способ включает электроискровое легирование титановой основы и термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере. Электроискровое легирование цирконием проводят при плотности переменного тока 0,6-1,9 А/мм2. Затем проводят термомодифицирующую обработку при частоте тока на индукторе 90±10 кГц и температуре 1000-1200°С в течении 1-10 секунд. Охлаждение титановых изделий производят на воздухе. Техническим результатом является формирование на поверхности титановых изделий различного назначения локальных покрытий системы Ti-Zr-(Ti,Zr)xOy, характеризуемых твердостью 10±0,3 ГПа, размером структурных элементов 4-9 мкм и открытой пористостью до 54%. 3 ил., 1 табл., 2 пр.
Способ формирования цирконийсодержащего оксидного покрытия на изделиях из титановых сплавов, включающий электроискровое легирование титановой основы и последующую термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере, отличающийся тем, что электроискровое легирование цирконием проводят при плотности переменного тока 0,6-1,9 А/мм2, а термомодифицирующую обработку осуществляют при частоте тока на индукторе 90±10 кГц, температуре 1000-1200°С в течение 1-10 секунд, после чего проводят охлаждение на воздухе.
Способ формирования наноструктурированного оксидного покрытия на техническом титане | 2017 |
|
RU2650221C1 |
СПОСОБ ПОЛУЧЕНИЯ НА ТИТАНЕ И ЕГО СПЛАВАХ ПОКРЫТИЙ, СОДЕРЖАЩИХ ОКСИД ЦИРКОНИЯ | 2006 |
|
RU2323278C1 |
СПОСОБ ФОРМИРОВАНИЯ ОКСИДНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ ТИТАНОВЫХ СПЛАВОВ | 2015 |
|
RU2611617C1 |
CN 104972188 A, 14.10.2015. |
Авторы
Даты
2019-10-28—Публикация
2018-12-28—Подача