Изобретение относится к области порошковой металлургии, в частности, к получению биметаллической полосы с антифрикционным покрытием из металлических порошков, предназначенной для изготовления подшипников скольжения.
Слоистые подшипники скольжения, представляющие собой стальную основу и антифрикционное покрытие, широко применяются со второй половины XX века. Тем не менее, экономически целесообразна разработка новых многофункциональных покрытий, обладающих комплексом улучшенных эксплуатационных свойств (повышенные абразивная и усталостная прочность и низкий коэффициент трения), а также способов и устройств их нанесения на основу, является актуальной проблемой современной науки о материалах. Для решения этой проблемы в первую очередь необходимо создать композиционные материалы, обладающие всем комплексом свойств, подчас взаимоисключающих, обеспечивающих функциональные возможности покрытий. С этих позиций наиболее перспективно производство композитов методами порошковой металлургии, имеющей практически неограниченные возможности в выборе составов и построении структуры материалов для обеспечения требуемых служебных свойств.
Известен способ изготовления биметалла для вкладышей подшипников скольжения (патент РФ №2244612, МПК В23К 20/04, опубликовано 20.01.2005), включающий подготовку поверхностей исходных материалов, сборку пакета из слоев стали и омедненной с двух сторон бронзы, плакирование путем холодной прокатки с обжатием 50-75%, термообработку при температуре 610-630°С в среде защитного газа. Толщину слоев меди в омедненной бронзе определяют из условия обеспечения в готовом биметалле медного подслоя толщиной не более 60-80 мкм. Биметалл изготавливают по технологической схеме и на оборудовании для холодной прокатки биметалла сталь-сплав АО 20-1.
Недостатками данного способа являются:
1. Многостадийность способа, включающая двустороннее омеднение бронзы.
2. Сложность подбора соотношения толщин листов бронзы и стали.
Известен способ изготовления биметаллической заготовки из антифрикционного сплава (патент РФ №2590464, опубликовано 10.06.2016), включающий выплавку сплава, содержащего алюминий, свинец, олово, медь, цинк, кремний и титан, его термообработку и последующую прокатку в три стадии, со степенью деформации на первой стадии прокатки, обеспечивающей плакирование заготовки алюминием, подготовку полученной плакированной алюминием полосы, антифрикционного сплава и стальной полосы для совместного деформирования, их совместное деформирование для получения биметаллической заготовки и окончательный отжиг заготовки, отличающийся тем, что выплавляют антифрикционный сплав при следующем соотношении компонентов, мас. %: свинец - 2,0-4,0, олово - 8,0-12,0, медь - 2,0-5,0, цинк - 1,5-4,0, кремний - 0,1-1,0, титан - 0,02-0,2, алюминий - остальное, термообработку антифрикционного сплава осуществляют не позднее чем через 3 ч после его выплавки при температуре Т=230°-270°С в течение 2,5-3,5 ч, после каждой стадии прокатки осуществляют термообработку при Т=230°-270°С в течение 1-3 ч, а окончательный отжиг биметаллической заготовки осуществляют не менее 2 ч при Т=300°-320°С.
Недостатками представленного способа являются:
1. Сложность и многостадийность процесса;
2. Высокая трудоемкость получения свинцово-алюминиевого сплава;
3. Многократные термические обработки;
4. Использование дорогостоящего олова в большом количестве.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому решению является способ получения биметаллической полосы для подшипников скольжения (заявка WO 2009/017501 А1, FEDERAL-MOGUL CORPOREITION и др., опубликовано 05.02.2009), обладающих повышенной износостойкостью. Антифрикционный слой состоит из сплава медь-олово-висмут с размером частиц ≤ 10 мкм, который может также включать фосфор, Fe3P или MoSi2. Добавление небольших количеств Fe3P или MoSi2 или их смеси относительно твердых частиц медно-оловянной матрицы, обеспечивает повышенную твердость и износостойкость материала подшипника. Способ осуществляется следующим образом: на стальную основу наносят смесь порошков сплава содержащего, мас. %: олова - 1-15, висмут - 1-30, остальное медь с 0,03-0,8 фосфора и 0,1-10 Fe3P или MoSi2, совместно нагревают указанную смесь и стальную основу для спекания порошков и припекания их к основе и прокатывают полученный композит для полного уплотнения порошковой смеси. После прокатки повторно нагревают полученный композит для диффузионного взаимодействия внутри антифрикционного материала и на границе соприкосновения с основой. Затем после вторичной термообработки композит повторно прокатывают с целью выдавливания олова на поверхность антифрикционного слоя.
Недостатками этого способа являются:
1.Сложность и трудоемкость получения исходной порошковой шихты для формирования антифрикционного слоя;
2.Многостадийность термической обработки и обработки давлением композита.
Техническим результатом данного изобретения является получение биметаллической полосы с антифрикционным порошковым покрытием на основе меди для подшипников скольжения, обладающей повышенными прочностными свойствами, износостойкостью и стойкостью к контактному разрушению путем формирования структуры сочетанием термической обработки и пластической деформации.
Указанный технический результат достигается тем, что в способе получения биметаллической полосы с антифрикционным порошковым покрытием на основе меди для подшипников скольжения, включающем подготовку исходной шихты для формирования антифрикционного слоя, совместную обработку давлением основы и антифрикционного слоя, их термообработку и последующее охлаждение, согласно изобретению исходную шихту, содержащую, мас. %: 9-11 порошка железа с размером частиц ≤40 мкм, 9-11 порошка свинца - ≤40 мкм, 0,5-1,0 порошка оксида алюминия (Аl2О3) - ≤0,1 мкм, остальное медь - ≤70 мкм, предварительно подвергают прокатке при давлении 200-250 Мпа и помещают на стальную основу, полученную композицию прокатывают с обжатием по стальной основе 70-80%, подвергают нагреванию до температуры 800-850°С в атмосфере водорода с изотермической выдержкой в течение 15-30 мин, охлаждение ведут в той же атмосфере.
Сущность заявляемого способа заключается в следующем:
- железный порошок в процессе обработки давлением деформируется и образует упрочняющие волокна. Использование порошков железа с дисперсностью выше 40 мкм ведет к снижению концентрации волокон и неравномерности их распределения по объему антифрикционного слоя. Применение железного порошка менее 9% не гарантирует должной концентрации волокон в объеме антифрикционного слоя, а более 11% снижает его антифрикционные свойства;
- порошок свинца обеспечивает повышенные антифрикционные свойства изделий и стабильность размеров после спекания. Использование порошков свинца с дисперсностью выше 40 мкм ведет к снижению прочностных свойств композита. Содержание свинцового порошка менее 9% приводит к недостаточному смазывающему эффекту (повышению коэффициента трения), а - выше 11% к снижению прочностных свойств композита;
- порошок оксида алюминия (Al2O3), обеспечивает нанодисперсное упрочнение матрицы (повышение твердости) антифрикционного слоя. Снижение содержания порошка оксида алюминия менее 0,5% недостаточно упрочняет антифрикционный слой, а увеличение содержания оксида алюминия выше 1,0% - резко затрудняет процессы его пластической деформации;
- предварительная прокатка порошковой шихты при давлении 200-250 Мпа обеспечивает равномерность распределения порошковых компонентов исходной шихты, заданную плотность и толщину антифрикционной порошковой полосы;
- прокатка шихты с давлением ниже 200 Мпа не обеспечивает необходимой прочности получаемой антифрикционной порошковой полосы для ее переноса на стальную основу, а - при давлении выше 250 сильно уплотняет антифрикционную порошковую полосу, делая весьма проблематичной ее накатку на стальную основу;
- совместная прокатка антифрикционной порошковой полосы и стальной основы с обжатием по стальной основе 70-80% создает необходимое сцепление антифрикционного покрытия со стальной основой, формирует заданную дисперсно-упрочненную волокнистую структуру антифрикционного покрытия, раскатывая в волокна железный порошок;
- совместная прокатка антифрикционной порошковой полосы и стальной основы с обжатием по стальной основе менее 70% недостаточно раскатывает железные частицы и не формирует волокнистую структуру. А прокатка с обжатием выше 80% не дает положительного результата и чрезмерно наклепывает стальную основу.
- совместная термообработка биметаллической композиции путем нагревания до температуры 800-850°С в атмосфере водорода обеспечивает очистку металлических дисперсоидов от оксидов, качественное спекание антифрикционного порошкового покрытия и диффузионное взаимодействие покрытия и стальной основы. Нагрев ниже 800°С не гарантирует полного спекания, а выше 850°С нецелесообразен.
Изотермическая выдержка при температуре 800-850°С в течение 15-30 мин обеспечивает полное спекание антифрикционного порошкового покрытия, а так же диффузионное взаимодействие основы и антифрикционного покрытия, создавая весьма прочное сцепление покрытия с основой. При изотермической выдержке менее 15 мин эти диффузионные процессы не успевают полностью пройти, а выдержка более 30 мин не дает дополнительных преимуществ.
Охлаждение в атмосфере водорода гарантирует отсутствие окисления свинца, меди и железа в поверхностных слоях антифрикционного покрытия.
Пример конкретного осуществления.
Экспериментальную проверку предлагаемого способа получения биметаллической полосы с антифрикционным порошковым покрытием на основе меди для подшипников скольжения проводили в лабораторных условиях в Институте металлургии УрО РАН по следующей технологии.
Порошковую композицию, содержащую, мас. %: 9-11 порошка железа с размером частиц ≤40 мкм, 9-11 порошка свинца - ≤40 мкм, 0,5-1,0 оксида алюминия (Аl2О3) - ≤0,1 мкм, остальное медный порошок - ≤70 мкм смешивали в виброаэрационном смесителе в течение 3 мин, затем полученную шихту помещали в бункер подачи лабораторного прокатного стана МЛС - 82 ИМЕТ УрО РАН и прокатывали с давлением 200-250 МПа. Полученную таким образом антифрикционную порошковую полосу размещали на стальную основу и совместно прокатывали с обжатием по стальной основе 70-80%. После прокатки полученную биметаллическую полосу помещали в электропечь с атмосферой водорода, нагревали до температуры 800-850°С, делали 15-30 минутную выдержку при этой температуре и охлаждали в атмосфере водорода.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОЙ ЗАГОТОВКИ ИЗ АНТИФРИКЦИОННОГО СПЛАВА | 2015 |
|
RU2590464C1 |
СПОСОБ ПОКРЫТИЯ СТАЛЬНОЙ ПОЛОСЫ АНТИФРИКЦИОННОЙ ПОРОШКОВОЙ СМЕСЬЮ | 2001 |
|
RU2208660C1 |
Способ диффузионной сварки | 1990 |
|
SU1764903A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛА ДЛЯ ВКЛАДЫШЕЙ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ | 2003 |
|
RU2244612C2 |
СПЛАВ ДЛЯ ПОДШИПНИКОВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОЙ ЗАГОТОВКИ ДЛЯ ПОДШИПНИКОВ ИЗ ЭТОГО СПЛАВА | 1996 |
|
RU2087577C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛА С АНТИФРИКЦИОННЫМ СПЛАВОМ НА АЛЮМИНИЕВОЙ ОСНОВЕ ДЛЯ ВКЛАДЫШЕЙ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ | 2008 |
|
RU2377107C2 |
ИЗНОСОСТОЙКИЙ ВКЛАДЫШ ПОДШИПНИКА ИЗ НЕ СОДЕРЖАЩЕГО СВИНЦА СПЛАВА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2007 |
|
RU2462330C2 |
Трехслойный композиционный вкладыш подшипника скольжения и способ его изготовления | 1986 |
|
SU1536095A1 |
АНТИФРИКЦИОННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 1993 |
|
RU2049140C1 |
АНТИФРИКЦИОННЫЙ СПЛАВ И СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОЙ ЗАГОТОВКИ ДЛЯ ПОДШИПНИКОВ ИЗ ЭТОГО СПЛАВА | 2001 |
|
RU2186869C1 |
Изобретение относится к области порошковой металлургии, в частности к способу получения биметаллической полосы с антифрикционным покрытием на основе меди из металлических порошков, предназначенной для изготовления подшипников скольжения. Исходную шихту, содержащую, мас.%: 9-11 порошка железа с размером частиц ≤40 мкм, 9-11 порошка свинца - ≤40 мкм, 0,5-1,0 порошка оксида алюминия (Al2O3) - ≤0,1 мкм, остальное медь - ≤70 мкм, предварительно подвергают прокатке при давлении 200-250 МПа и помещают на стальную основу. Полученную композицию прокатывают с обжатием по стальной основе 70-80% и подвергают нагреву до температуры 800-850°С в атмосфере водорода с изотермической выдержкой в течение 15-30 мин. Охлаждение ведут в той же атмосфере. Обеспечивается повышение прочностных свойств, износостойкости и стойкости к контактному разрушению. 1 табл., 1 пр.
Способ получения биметаллической полосы с антифрикционным порошковым покрытием на основе меди для подшипников скольжения, включающий подготовку исходной смеси для формирования антифрикционного слоя, совместную термообработку и обработку давлением основы и антифрикционного слоя и последующее охлаждение, отличающийся тем, что исходную шихту, содержащую, мас.%: 9-11 порошка железа с размером частиц ≤40 мкм, 9-11 порошка свинца - ≤40 мкм, 0,5-1,0 порошка оксида алюминия (Аl2O3) - ≤0,1 мкм, остальное медь - ≤70 мкм, предварительно подвергают прокатке при давлении 200-250 МПа и помещают на стальную основу, при этом полученную композицию прокатывают с обжатием по стальной основе 70-80%, подвергают нагреву до температуры 800-850°С в атмосфере водорода с изотермической выдержкой в течение 15-30 мин, а охлаждение ведут в той же атмосфере.
WO 2009017501 A1, 05.02.2009 | |||
СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛА С АНТИФРИКЦИОННЫМ СПЛАВОМ НА АЛЮМИНИЕВОЙ ОСНОВЕ ДЛЯ ВКЛАДЫШЕЙ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ | 2008 |
|
RU2377107C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОСЛОЙНЫХ МАТЕРИАЛОВ | 1991 |
|
RU2013187C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛОИСТОГО КОМПОЗИТА СИСТЕМЫ СТАЛЬ-АЛЮМИНИЙ | 2012 |
|
RU2501630C1 |
СПОСОБ ПОКРЫТИЯ СТАЛЬНОЙ ПОЛОСЫ АНТИФРИКЦИОННОЙ ПОРОШКОВОЙ СМЕСЬЮ | 2001 |
|
RU2208660C1 |
CN 103231063 A, 07.08.2013 | |||
US 4267241 A1, 12.05.1981 | |||
US 4406857 A1, 27.09.1983. |
Авторы
Даты
2019-11-07—Публикация
2019-06-10—Подача