Способ изготовления полупроводниковой структуры Российский патент 2019 года по МПК H01L21/20 

Описание патента на изобретение RU2705516C1

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с низкой плотностью дефектов.

Известен способ изготовления полупроводниковой структуры [Заявка 1246851 Япония, МКИ H01L 21/94] путем нанесения слоя SiO2 на поверхность основания из молибдена или кремниевой пластины; в первом случае для этой цели используют метод химического осаждения из газовой фазы, во- втором случае применяют метод термического окисления. Затем горизонтально расположенные кремниевую пластину и молибденовое основание, обращенные друг к другу слоем SiO2 приводят в контакт и склеивают. Последующей шлифовкой и полировкой кремниевой пластины с тыльной стороны добиваются получения поверхности требуемого класса обработки. В таких структурах при различных температурных режимах и в различных средах повышается дефектность структуры и ухудшаются электрические параметры приборов.

Известен способ изготовления полупроводниковой структуры [Патент 4962051 США, МКИ H01L 21/265] формированием промежуточного слоя легированного изоэлектронной примесью. Атомы изоэлектронной примеси имеют отличный ковалентный радиус от атомов материала подложки, в результате чего образуется большое количество дислокаций несоответствия на границе раздела слой/подложка. В дальнейшем проводится эпитаксиальное наращивание рабочего слоя полупроводника. При этом на границе раздела рабочий слой/слой легированный изоэлектронной примесью, также возникают дислокации несоответствия, расположенные в плоскости границы раздела.

Недостатками этого способа являются- высокая плотность дефектов, повышенные значения тока утечки и низкая технологичность.

Задача, решаемая изобретением: снижение плотности дефектов, обеспечение технологичности, улучшение параметров структур, повышение качества и увеличение процента выхода годных.

Задача решается формированием слоя нитрида алюминия толщиной 30-50 нм на сапфировой подложке методом реактивного ионно-плазменного распыления, при давлении (3-5)10-3 мм. рт.ст., температуре подложки 200-250°С, с последующим осаждением кремния со скоростью роста пленки 15 нм/с, при температуре 1000-1150°С, при расходе водорода и силана, соответственно, 15 л/мин и 50 мл/мин.

Технология способа состоит в следующем: на сапфировой подложке формируют слой нитрида алюминия толщиной 30-50 нм методом реактивного ионно-плазменного распыления с использованием мишени из алюминия марки А-999 в плазме особо чистого (99.999) азота без добавления аргона, при давлении (3-5)10-3 мм рт.ст. и температуре подложки 200-250 С. Затем пиролитически осаждают слой кремния со скоростью роста пленки 15 нм/с, при температуре 1000-1150°С, при расходе водорода и силана, соответственно, 15 л/мин и 50 мл/мин.

По предлагаемому способу были изготовлены и исследованы полупроводниковые структуры. Результаты обработки представлены в таблице.

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 14,8%.

Технический результат: снижение плотности дефектов, обеспечение технологичности, улучшение параметров структур, повышение качества и увеличения процента выхода годных.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления полупроводниковой структуры путем формирования слоя нитрида алюминия толщиной 30-50 нм на сапфировой подложке методом реактивного ионно-плазменного распыления при давлении (3-5)10-3 мм рт.ст., температуре подложки 200-250°С, с последующим пиролитическим осаждением кремния со скоростью роста пленки 15 нм/с, при температуре 1000-1150°С, при расходе водорода и силана соответственно, 15 л/мин и 50 мл/мин, позволяет повысит процент выхода годных приборов и улучшит их надежность.

Похожие патенты RU2705516C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2007
  • Мустафаев Абдулла Гасанович
  • Мустафаев Гасан Абакарович
  • Мустафаев Арслан Гасанович
RU2356125C2
Способ изготовления силицида никеля 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
RU2734095C1
Способ изготовления мелкозалегающих переходов 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2748335C1
Способ изготовления силицида титана 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
  • Мустафаев Арслан Гасанович
RU2751983C1
Способ получения нитрида кремния 2016
  • Мустафаев Гасан Абакарович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
  • Мустафаев Абдулла Гасанович
RU2629656C1
Способ формирования полевых транзисторов 2022
  • Мустафаев Гасан Абакарович
  • Черкесова Наталья Васильевна
  • Мустафаев Арслан Гасанович
  • Мустафаев Абдулла Гасанович
RU2791268C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2011
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
RU2466476C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2008
  • Мустафаев Абдулла Гасанович
  • Мустафаев Гасан Абакарович
  • Мустафаев Арслан Гасанович
RU2388108C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ 2013
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2539789C1
Способ изготовления радиационно-стойкого полупроводникового прибора 2021
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
  • Черкесова Наталья Васильевна
  • Хасанов Асламбек Идрисович
  • Мустафаев Абдулла Гасанович
  • Даудов Зайндин Абдулганиевич
RU2785122C1

Реферат патента 2019 года Способ изготовления полупроводниковой структуры

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с низкой плотностью дефектов. Технология способа состоит в следующем: на сапфировой подложке формируют слой нитрида алюминия толщиной 30-50 нм методом реактивного ионно-плазменного распыления с использованием мишени из алюминия в плазме особо чистого азота без добавления аргона, при давлении (3-5)10-3 мм рт.ст. и температуре подложки 200-250°С. Затем пиролитически осаждают слой кремния со скоростью роста пленки 15 нм/с при температуре 1000-1150°С при расходе водорода и силана соответственно 15 л/мин и 50 мл/мин. Изобретение обеспечивает снижение плотности дефектов, повышение технологичности, улучшение параметров структур, повышение качества и увеличение процента выхода годных. 1 табл.

Формула изобретения RU 2 705 516 C1

Способ изготовления полупроводниковой структуры, включающий подложку, формирование промежуточного слоя, процессы наращивания рабочего слоя полупроводника, отличающийся тем, что структуру формируют на сапфировой подложке нанесением слоя нитрида алюминия толщиной 30-50 нм методом реактивного ионно-плазменного распыления, при давлении (3-5)10-3 мм рт.ст., температуре подложки 200-250°С с последующим осаждением кремния со скоростью роста пленки 15 нм/с при температуре 1000-1150°С при расходе водорода и силана соответственно 15 л/мин и 50 мл/мин.

Документы, цитированные в отчете о поиске Патент 2019 года RU2705516C1

RU 2008145801 A, 27.05.2010
RU 2008145803 A, 27.05.2010
RU 2013131291 A, 20.01.2015
Способ низкотемпературной плазмоактивированной гетероэпитаксии наноразмерных пленок нитридов металлов третьей группы таблицы Д.И. Менделеева 2017
  • Амбарцумов Михаил Георгиевич
  • Тарала Виталий Алексеевич
RU2658503C1
RU 2014104535 A, 10.09.2015.

RU 2 705 516 C1

Авторы

Мустафаев Гасан Абакарович

Мустафаев Абдулла Гасанович

Мустафаев Арслан Гасанович

Черкесова Наталья Васильевна

Багов Артур Мишевич

Даты

2019-11-07Публикация

2019-03-12Подача