СПОСОБ КОНТРОЛЯ ЦЕЛОСТНОСТИ РЕЛЬСОВЫХ НИТЕЙ ПО СООТНОШЕНИЮ ЗНАЧЕНИЙ ТОКОВ В РЕЛЬСАХ Российский патент 2019 года по МПК B61L23/00 

Описание патента на изобретение RU2706607C1

Область техники, к которой относится изобретение

Изобретение относится к области железнодорожной автоматики и телемеханики и может быть использовано для контроля целостности рельсовых нитей.

Уровень техники

Известен способ контроля целостности рельсовых нитей, заключающийся в измерении текущего тока (напряжения) приемного конца рельсовой цепи и сравнении его с пороговым значением. [Полевой Ю.И. Методы и устройства контроля местонахождения объекта в системе управления подвижным составом: дис....докт. техн. наук / Ю.И. Полевой. - Самара: СамГУПС, 2013. - 454 с].

Недостатком способа является то, что при изломе рельсовой нити и отсутствии устойчивого гальванического разрыва нельзя проконтролировать неисправность рельсовой линии.

Известен способ контроля целостности рельсовых нитей, заключающийся в контроле текущего тока питающего конца и сравнении его с пороговым значением. Контроль целостности рельсовых нитей, осуществляющийся посредством рельсовой линии, концы которой закорочены шунтами, а питание осуществляется током тональной частоты [Патент 2173278 (РФ). Способ контроля состояний путевого участка двухчастотной рельсовой цепи/ Полевой Ю.И., Горелик А.В. - Опубл. 02.11. 2018 Бюл. №31, МПК B61L 23/16].

Недостатком способа является то, что при изломе рельсовой нити и отсутствии устойчивого гальванического разрыва нельзя проконтролировать неисправность рельсовой нити.

Данное техническое решение выбрано в качестве прототипа.

Раскрытие изобретения

Техническим результатом, на достижение которого направлено техническое решение является повышение достоверности контроля целостности рельсовых нитей при проходе локомотива, когда перемежающийся контакт может быть своевременно обнаружен. При этом, результат контроля может быть использован для снижения вероятности возникновения опасной ситуации при движении этого же поезда.

Способ контроля целостности рельсовых нитей по отношению значений токов в рельсах заключающийся в том, что концы рельсовой линии соединяются шунтами, а питание осуществляется током тональной частоты, отличающийся тем, что

в качестве шунтов используются колесные пары двух локомотивных секций, локомотивный генератор для питания рельсовой линии подсоединяется к шунтам через низкоомные шины, на одной из локомотивных секций устанавливаются приемные катушки, аналогичные катушкам АЛСН, которые включаются раздельно, под катушками по рельсам между локомотивными секциями протекает ток от локомотивного генератора, за счет чего обеспечивается наведение ЭДС в обоих катушках;

напряжение от ЭДС первой катушки, которое является функцией тока первого рельса, прикладывается к входу первого фильтра, с выхода которого прикладывается к входу первого усилителя, с выхода которого прикладывается к входу первого выпрямителя, с выхода которого аналоговый сигнал поступает на вход первого аналого-цифрового преобразователя, с выхода которого цифровой сигнал поступает на вход локомотивной ЭВМ, который предназначен для получения информации о величине тока первого рельса;

напряжение от ЭДС второй катушки, являющееся функцией тока второго рельса прикладывается к входу второго фильтра, с выхода которого прикладывается к входу второго усилителя, с выхода которого прикладывается к входу второго выпрямителя, с выхода которого аналоговый сигнал поступает на вход второго аналого-цифрового преобразователя, с выхода которого цифровой сигнал поступает на вход локомотивной ЭВМ, который предназначен для получения информации о величине тока второго рельса;

напряжение от ЭДС катушки токового трансформатора, являющееся функцией тока протекающего по автосцепке между локомотивными секциями, прикладывается к входу третьего фильтра, с выхода которого прикладывается к входу третьего усилителя, с выхода которого прикладывается к входу третьего выпрямителя, с выхода которого аналоговый сигнал поступает на вход третьего аналого-цифрового преобразователя, с выхода которого цифровой сигнал поступает на вход локомотивной ЭВМ, который предназначен для получения информации о величине тока автосцепки;

падение напряжения на шунте, включенного в цепь нагрузки локомотивного генератора, являющееся функцией величины тока генератора, прикладывается к входу четвертого фильтра, с выхода которого прикладывается к входу четвертого усилителя, с выхода которого прикладывается к входу четвертого выпрямителя, с выхода которого аналоговый сигнал поступает на вход четвертого аналого-цифрового преобразователя, с выхода которого цифровой сигнал поступает на вход локомотивной ЭВМ, который предназначен для получения информации о величине тока локомотивного генератора;

возможны два варианта обнаружения неисправности рельса с движущегося подвижного состава:

во-первых, при установке изолятора в конструкции автосцепки между локомотивными секциями тепловоза, для исключения протекания тока от локомотивного генератора по автосцепке, достаточно проконтролировать значение отношения тока первого рельса к току второго рельса и отношения тока второго рельса к току первого, которые должны быть в пределах от 0,5 до 2; при электрической тяге локомотивный генератор не устанавливается, для контроля целостности рельс используются значения тяговых токов по рельсам, их отношение должно находиться в тех же пределах, что и при автономной тяге;

во-вторых, при отсутствии изолятора в конструкции автосцепки между локомотивными секциями тепловоза, рамы локомотивных секций соединяются низкоомной перемычкой для исключения влияния плавающего электрического контакта автосцепки, определяется суммарный ток рельсов посредством вычитания из значения тока генератора значения тока автосцепки между секциями локомотива, и сравнивают его с пороговым значением, которое должно быть не менее четвертой части тока локомотивного генератора, иначе результат обнаружения неисправности будет малодостоверным, если необходимое превышение есть, то осуществляется контроль отношений токов рельсов по выше представленной методике, при электрической тяге локомотивный генератор не устанавливается, для контроля целостности рельсов используются значения тяговых токов в рельсах, которые несоизмеримо выше тока локомотивного генератора, поэтому выше представленная методика контроля целостности рельсовой нити приемлема и в этом случае; независимо от местонахождения тяговой подстанции тяговый ток по рельсам между локомотивными секциями протекает всегда, поэтому представленная методика контроля целостности рельсовой нити является приемлемой и в этом случае, т.е. она является универсальной;

при повреждении рельса информация об этом выводится на локомотивный навигатор и передается по радиосвязи на ближайшие станции, а также осуществляется отключение системы автоматического регулирования скорости.

Краткое описание чертежей

На фиг. 1 представлена схема подключения локомотивного генератора к неподрессоренным узлам (буксам); на фиг. 2 - схема питания электровоза от тяговой подстанции; на фиг. 3 - схема соединения приборов приемных концов и локомотивной ЭВМ - ЭВМЛ; фиг. 4 - вариант схемы контрольного устройства без изолятора в конструкции локомотивной автосцепки.

Осуществление изобретения

На фиг. 1, 2, 3 и 4 приведены следующие обозначения:

1, 2 - локомотивные секции А и Б соответственно;

3, 4 - первый и второй рельсы;

5 - первая и вторая тележки;

6 - первая и вторая колесные пары;

7 - третья и четвертая колесные пары;

8 - автосцепка;

9 - изолятор автосцепки (исключает электрическую цепь между локомотивными секциями А и Б);

10 - шина секции А для подключения локомотивного генератора к буксам;

11-18 - буксы;

19 - перемычка подключения шины к буксам;

20 и 21 - первая и вторая локомотивные катушки;

22 - тяговая подстанция ТП;

23 - контактный провод;

24 - шина секции Б для подключения локомотивного генератора к буксам;

25 и 26 - первый и второй полосовые фильтры ФП1 и ФП2;

27 и 28 - первый и второй усилители У1 и У2;

29 и 30 - первый и второй выпрямители В1 и В2;

31 и 32 - первый и второй аналого-цифровые преобразователи АЦП1 и АЦП2;

33 - локомотивная электронно-вычислительная машина ЭВМЛ;

34 - приемник ГЛОНАСС ПГЛ;

35 - навигатор НАВ;

36 - система контроля и автоматического управления движением СКУД;

37 - локомотивная радиостанция РСЛ;

38 - трансформатор тока;

39 - локомотивный генератор ГЛ;

40 - шунт RШ;

41 и 42 - третий и четвертый полосовые фильтры ФП3 и ФП4;

43 и 44 - третий и четвертый усилители У3 и У4;

45 и 46 - третий и четвертый выпрямители В3 и В4;

47 и 48 - третий и четвертый аналого-цифровые преобразователи АЦП3 и АЦП4.

49 - тележка секции Б.

Локомотивная ЭВМ имеет следующие входы для приема информации: ВхР1 и ВхР2 - входы для приема информации о значениях тока первого и второго рельсов; ВхП - вход приема информации о местонахождении локомотива; ВхА и ВхГ - входы приема информации о значениях тока автосцепки и локомотивного генератора. ЭВМ также имеет входы обмена информацией с локомотивной радиостанцией ВхР, навигатором ВхН, системой контроля и управления движением СКУД.

Способ контроля целостности рельсовых нитей по отношению значений токов в рельсах может быть реализован несколькими вариантами в зависимости от вида тяги (электрическая или автономная), от количества локомотивных секций (одна или две), от конструкции автосцепки между локомотивными секциями (обычная, модернизированная - с изолятором). Наиболее сложным вариантом является реализация способа для двухсекционного тепловоза с автосцепкой. Для исключения влияния перемежающегося (плавающего) контакта между узлами автосцепки локомотивных секций корпусы локомотивных секций соединяются низкоомной перемычкой.

Модернизация автосцепки заключается в том, что между узлами автосцепки двух тепловозных секций устанавливается изолятор (изолятор автосцепки) для электрической изоляции секций друг от друга.

Различные варианты реализации контрольного устройства осуществляются путем исключения некоторых узлов. Основные параметры системы (fк - частота локомотивного генератора (контрольная частота), - длина контрольного участка, алгоритм расчета и пороговые параметры) рассчитаны на скорость грузовых поездов Vг до 100 км/ч). При скорости грузовых поездов 90-100 км/ч и существующей конструкции пневматических тормозов достигается максимальная пропускная способность.

Для скоростных поездов параметры контрольного устройства должны быть определены дополнительно.

Основным критерием определения целостности рельсовых нитей является (см. [Полевой Ю.И. Методы и устройства контроля местонахождения объекта в системе управления подвижным составом: дис....докт. техн. наук / Ю.И. Полевой. - Самара: СамГУПС, 2013. - 454 с. ]) отношение величин ЭДС в локомотивных катушках (аналоги катушек АЛС). Дополнительно могут быть учтены значения ЭДС катушек для контроля исправности самого контрольного устройства.

Наиболее простым методом обработки значений ЭДС, является преобразование аналоговых в цифровые сигналы с дальнейшей обработкой результатов в локомотивной ЭВМ - ЭВМЛ.

На фиг. 1 представлена схема подключения локомотивного генератора ГЛ 39 (см. фиг. 4) к неподрессоренным узлам локомотива. Там же показаны локомотивные секции А 1 и Б 2, первый 3 и второй рельсы 4, тележки 5, колесные пары 6 и 7, автосцепка 8, изолятор автосцепки 9, первая шина подключения локомотивного генератора к буксам 10, буксы 11 - 18, перемычка 19 (на фиг. 1 показана одна из восьми перемычек), первая и вторая локомотивные катушки соответственно 20 и 21.

Локомотивный генератор одним выводом выхода (на фиг. 1 не показан) подсоединен через шину 10 (фиг. 1 и 2) ко всем буксам (позиции 11-18) колесных пар секции А 1 локомотива, а другим выводом выхода через шину 24 - к буксам секции Б 2 (на фиг. 1 и 2 эти буксы секции Б не отображены). Ток от локомотивного генератора через шины 10 и 24, перемычки 19, буксы 11-18, колесные пары 6 и 7 (секции А) (и колесные пары секции Б на фиг. 1 и 2 не показаны) протекает по отрезкам рельсов на участке пути между крайними колесными парами (ближних друг к другу) локомотивных секций (ток по отрезкам рельсов между секциями).

Путевой участок между секциями локомотивов является контрольным участком, на котором и осуществляется контроль целостности рельсовых нитей. Ток контрольного участка имеет наибольшее значение относительно токов по отрезкам рельсов между другими колесными парами локомотива. Благодаря тому, что автосцепка 8 имеет изолятор 9, контрольный участок не шунтируется автосцепкой и корпусами локомотивных секций.

При повреждении первого рельса 3 на контрольном участке ток (I1) по нему от генератора, практически, не протекает. При этом возрастает ток по второму рельсу 4 (I2). При этом отношение токов I1/I2 стремится к нулю, а отношение токов I2/I1 - к некоторому конечному значению. При таком соотношении токов можно выявить место повреждения рельсовой нити, даже если учесть, что при движении локомотива концы поврежденного рельса могут иметь перемежающийся контакт.

Значения ЭДС локомотивных катушек К1 20 и К2 21 (фиг. 3) приложены к входам полосовых фильтров ФП1 25 и ФП2 26 соответственно, которое усиливается усилителями У1 27 и У2 28, выпрямляется выпрямителями В1 29 и В2 30, преобразуется аналого-цифровыми преобразователями АЦП1 31 и АЦП2 32 и подается на входы локомотивной ЭВМ - ЭВМЛ 33. Эта ЭВМ может обработать сигналы по любому алгоритму [Полевой Ю.И. Методы и устройства контроля местонахождения объекта в системе управления подвижным составом: дис....докт. техн. наук / Ю.И. Полевой. - Самара: СамГУПС, 2013. - 454 с], заложенному в программе, в том числе по отношению токов для обнаружения повреждения рельсов, а также сравнить значения ЭДС с пороговыми значениями, которые введены в ЭВМ для оценки исправности работы, всего тракта системы приема сигнала. В ЭВМ может быть заложен и другой алгоритм контроля целостности рельсовых линий и исправности тракта приема сигнала.

В момент обнаружения неисправности рельсовой линии по сигналу с приемника ГЛОНАСС ПГЛ 34 ЭВМЛ 33 фиксирует координату места неисправности рельсовой нити, выдает информацию на локомотивный навигатор НАВ 34, отключает систему контроля и автоматического управления движения СКУД 36, что переводит движение поезда в режим выбега, и кроме того, передает информацию с использованием локомотивной радиостанции PC Л 37 на ближайшие ж. д. станции о координате места повреждения рельса. Режим выбега является наиболее безопасным при преодолении поврежденного рельса.

В памяти ЭВМЛ хранится информация о параметрах пути и поезда. Это позволяет отличить проход поезда поврежденного рельса от прохода изолирующего стыка (известны координаты изолирующих стыков).

При использовании системы на участке с электрической тягой, локомотивный генератор и устройства, соединяющие его с буксами не нужны. В качестве контрольных сигналов используются тяговые токи в рельсах. В условиях автономной тяги полосовые фильтры ФП1 25, ФП2, ФП3 41 и ФП4 42 не нужны.

Однако, в некоторых случаях фильтры могут понадобиться. При прекращении движения и длительном простое вагонов (в период кризиса закрывались вторые перегонные пути занятые вагонами) головки рельсов и бандажи вагонов покрывались ржавчиной, шунты от подвижного состава не чувствовались; кроме того, на железнодорожных мостах (мост через реку Амударью длиной 1775 м) с подвеской на консолях высоковольтных линий напряжением 500 кВ и большим током в локомотивных катушках АЛС создаются ЭДС, эквивалентные токам 10-15 А в каждом из рельсов. В упомянутых случаях могли создаваться ситуации, когда повреждение рельса (в отсутствии гальванического контакта) могло быть не зафиксировано контрольным устройством.

На фиг. 4 представлен вариант схемы контрольного устройства для случая, когда изолятора в конструкции локомотивной автосцепки нет. В ЭВМЛ 33 поступает информация о токе через конструкцию автосцепки за счет наведенной ЭДС в токовом трансформаторе 38, через полосовой фильтр ФП3 41, усилитель У3 43, выпрямитель В3 45 и аналого-цифровой преобразователь АЦП3 47. В эту же ЭВМ поступает информация о токе генератора, который пропорционален падению напряжения на резисторе RШ 40, через полосовой фильтр ФП4 42, усилитель У4 44, выпрямитель В4 46 и аналого-цифровой преобразователь АЦП4 48. Ток от верхнего вывода генератора ГЛ 39 протекает к нижнему по цепи через резистор RШ и далее по трем цепям: первая цепь замыкается через автосцепку 8, вторая и третья - через шину секции Б 24, по колесным парам секции Б 2, по параллельно включенным первому и второму рельсам 3 и 4, по колесным парам 6 и 7 секции А 1, по шине 10.

По значению тока генератора IГ и тока автосцепки IA можно определить ток, протекающий по рельсам контрольного участка IК=12+12=IГ-IA. Если ток IК больше допустимого тока IД (Iд>0,1⋅Iг), то по отношениям токов I1/I2 и I2/I1 можно определить исправность/неисправность рельсовых нитей, в противном случае, при малых значениях токов в рельсах на контрольном участке, отношение токов может дать ошибочный результат.

Похожие патенты RU2706607C1

название год авторы номер документа
СПОСОБ И МОБИЛЬНОЕ УСТРОЙСТВО КОНТРОЛЯ ЦЕЛОСТНОСТИ РЕЛЬСОВЫХ НИТЕЙ 2019
  • Полевой Юрий Иосифович
RU2710840C1
СПОСОБ РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ПОЕЗДОВ 2021
  • Полевой Юрий Иосифович
RU2770034C1
СПОСОБ РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ПОЕЗДОВ НА ПЕРЕГОНЕ БЕЗ НАПОЛЬНЫХ УСТРОЙСТВ ЖЕЛЕЗНОДОРОЖНОЙ АВТОМАТИКИ 2019
  • Полевой Юрий Иосифович
  • Горелик Александр Владимирович
RU2712364C1
СПОСОБ РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ПОЕЗДОВ 2020
  • Полевой Юрий Иосифович
RU2729753C1
СПОСОБ РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ПОЕЗДОВ И УСТРОЙСТВО КОНТРОЛЯ СОСТОЯНИЙ ПУТЕВЫХ УЧАСТКОВ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2020
  • Полевой Юрий Иосифович
RU2739086C1
СПОСОБ РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ПОЕЗДОВ НА ПЕРЕГОНЕ 2020
  • Полевой Юрий Иосифович
RU2730699C1
СПОСОБ И УСТРОЙСТВО КОНТРОЛЯ ЦЕЛОСТНОСТИ РЕЛЬСОВЫХ НИТЕЙ 2020
  • Полевой Юрий Иосифович
RU2727427C1
УСТРОЙСТВО РЕЗЕРВНОГО КОНТРОЛЯ СОСТОЯНИЙ ПУТЕВЫХ УЧАСТКОВ 2020
  • Полевой Юрий Иосифович
RU2751830C1
СПОСОБ КОНТРОЛЯ ЦЕЛОСТНОСТИ РЕЛЬСОВЫХ НИТЕЙ 2020
  • Полевой Юрий Иосифович
  • Горелик Александр Владимирович
  • Мухин Леонид Викторович
RU2745512C1
СПОСОБ РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ПАКЕТНЫХ ПОЕЗДОВ 2022
  • Полевой Юрий Иосифович
RU2781700C1

Иллюстрации к изобретению RU 2 706 607 C1

Реферат патента 2019 года СПОСОБ КОНТРОЛЯ ЦЕЛОСТНОСТИ РЕЛЬСОВЫХ НИТЕЙ ПО СООТНОШЕНИЮ ЗНАЧЕНИЙ ТОКОВ В РЕЛЬСАХ

Изобретение относится к железнодорожной автоматике для контроля целостности рельсовых нитей. В способе концы рельсовой линии соединяются шунтами, а питание осуществляется током тональной частоты. Причем в качестве шунтов используются колесные пары двух локомотивных секций, локомотивный генератор для питания рельсовой линии подсоединяется к шунтам через низкоомные шины, на одной из локомотивных секций устанавливаются приемные катушки, аналогичные катушкам АЛСН, которые включаются раздельно, под катушками по рельсам между локомотивными секциями протекает ток от локомотивного генератора, за счет чего обеспечивается наведение ЭДС в обеих катушках, по соотношению токов в рельсах между локомотивными секциями контролируют целостность рельсов на контрольном участке, т.е. между секциями. Достигается повышение достоверности контроля целостности рельсовых нитей после прохода локомотива до вступления вагонов поезда в условиях вибрации, когда перемежающийся контакт может быть своевременно зафиксирован. 4 ил.

Формула изобретения RU 2 706 607 C1

Способ контроля целостности рельсовых нитей по отношению значений токов в рельсах, заключающийся в том, что концы рельсовой линии соединяются шунтами, а питание осуществляется током тональной частоты, отличающийся тем, что

в качестве шунтов используются колесные пары двух локомотивных секций, локомотивный генератор для питания рельсовой линии подсоединяется к шунтам через низкоомные шины, на одной из локомотивных секций устанавливаются приемные катушки, аналогичные катушкам АЛСН, которые включаются раздельно, под катушками по рельсам между локомотивными секциями протекает ток от локомотивного генератора, за счет чего обеспечивается наведение ЭДС в обеих катушках;

напряжение от ЭДС первой катушки, которое является функцией тока первого рельса, прикладывается к входу первого фильтра, с выхода которого прикладывается к входу первого усилителя, с выхода которого прикладывается к входу первого выпрямителя, с выхода которого аналоговый сигнал поступает на вход первого аналого-цифрового преобразователя, с выхода которого цифровой сигнал поступает на вход локомотивной ЭВМ, который предназначен для получения информации о величине тока первого рельса;

напряжение от ЭДС второй катушки, являющееся функцией тока второго рельса, прикладывается к входу второго фильтра, с выхода которого прикладывается к входу второго усилителя, с выхода которого прикладывается к входу второго выпрямителя, с выхода которого аналоговый сигнал поступает на вход второго аналого-цифрового преобразователя, с выхода которого цифровой сигнал поступает на вход локомотивной ЭВМ, который предназначен для получения информации о величине тока второго рельса;

напряжение от ЭДС катушки токового трансформатора, являющееся функцией тока, протекающего по автосцепке между локомотивными секциями, прикладывается к входу третьего фильтра, с выхода которого прикладывается к входу третьего усилителя, с выхода которого прикладывается к входу третьего выпрямителя, с выхода которого аналоговый сигнал поступает на вход третьего аналого-цифрового преобразователя, с выхода которого цифровой сигнал поступает на вход локомотивной ЭВМ, который предназначен для получения информации о величине тока автосцепки;

падение напряжения на шунте, включенного в цепь нагрузки локомотивного генератора, являющееся функцией величины тока генератора, прикладывается к входу четвертого фильтра, с выхода которого прикладывается к входу четвертого усилителя, с выхода которого прикладывается к входу четвертого выпрямителя, с выхода которого аналоговый сигнал поступает на вход четвертого аналого-цифрового преобразователя, с выхода которого цифровой сигнал поступает на вход локомотивной ЭВМ, который предназначен для получения информации о величине тока локомотивного генератора;

возможны два варианта обнаружения неисправности рельса с движущегося подвижного состава:

во-первых, при установке изолятора в конструкции автосцепки между локомотивными секциями тепловоза, для исключения протекания тока от локомотивного генератора по автосцепке, достаточно проконтролировать значение отношения тока первого рельса к току второго рельса и отношения тока второго рельса к току первого, которые должны быть в пределах от 0,5 до 2; при электрической тяге локомотивный генератор не устанавливается, для контроля целостности рельс используются значения тяговых токов по рельсам, их отношение должно находиться в тех же пределах, что и при автономной тяге;

во-вторых, при отсутствии изолятора в конструкции автосцепки между локомотивными секциями тепловоза, рамы локомотивных секций соединяются низкоомной перемычкой для исключения влияния плавающего электрического контакта автосцепки, определяется суммарный ток рельсов посредством вычитания из значения тока генератора значения тока автосцепки между секциями локомотива, и сравнивают его с пороговым значением, которое должно быть не менее четвертой части тока локомотивного генератора, иначе результат обнаружения неисправности будет малодостоверным, если необходимое превышение есть, то осуществляется контроль отношений токов рельсов по вышепредставленной методике, при электрической тяге локомотивный генератор не устанавливается, для контроля целостности рельсов используются значения тяговых токов в рельсах, которые несоизмеримо выше тока локомотивного генератора, поэтому вышепредставленная методика контроля целостности рельсовой нити приемлема и в этом случае; независимо от местонахождения тяговой подстанции тяговый ток по рельсам между локомотивными секциями протекает всегда, поэтому представленная методика контроля целостности рельсовой нити является приемлемой и в этом случае, т.е. она является универсальной;

при повреждении рельса информация об этом выводится на локомотивный навигатор и передается по радиосвязи на ближайшие станции, а также осуществляется отключение системы автоматического регулирования скорости.

Документы, цитированные в отчете о поиске Патент 2019 года RU2706607C1

Устройство для контроля целостности рельсовой линии 1984
  • Крючков Николай Николаевич
  • Шелухин Олег Иванович
SU1243997A1
Устройство для измерения параметров рельсовой линии 1983
  • Жох Владимир Павлович
  • Мороко Николай Алексеевич
  • Чирва Алексей Григорьевич
  • Шипилов Александр Алексеевич
  • Каменев Степан Владимирович
  • Удовиков Александр Александрович
SU1144922A1
Устройство для измерения проводимости изоляции рельсовой линии 1982
  • Котляренко Николай Федорович
  • Жох Владимир Павлович
  • Мороко Николай Алексеевич
  • Гордон Борис Моисеевич
  • Богданов Анатолий Владимирович
SU1134448A1
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ИЗОЛИРУЮЩИХ СТЫКОВ РЕЛЬСОВЫХ ЦЕПЕЙ 2006
  • Логинов Александр Сергеевич
  • Коба Сергей Васильевич
  • Иванов Александр Андреевич
RU2314954C1
Способ изготовления изделий из тонкого листового материала и просечка для его осуществления 1950
  • Мац М.М.
SU92643A1

RU 2 706 607 C1

Авторы

Полевой Юрий Иосифович

Горелик Александр Владимирович

Даты

2019-11-20Публикация

2019-02-27Подача