Изобретение относится к области фармакологии и медицины, а именно, к новым антиоксидантам на основе сульфопроизводных 2-этил-6-метил-3-гидроксипиридина.
Антиоксиданты на основе 2-этил-6-метил-3-гидроксипиридина и его солей (гидрохлорид и сукцинат) широко используются в практическом здравоохранении для лечения заболеваний сопровождающихся окислительным стрессом и образованием активных форм кислорода, включая ишемию вследствие нарушения кровообращения головного мозга с острым характером протекания, атеросклероз, и прочие заболевание, которым сопутствует гипоксия тканей. Воронина Т.А. Антиоксидант мексидол. Психофармакол. Биол. Наркол. 2001. Т. 1. № 1. С. 2–12. Основным недостатком 2-этил-6-метил-3-гидроксипиридина является его неустойчивость к окислению кислородом воздуха и связанная с этим необходимость использования консервантов в составе лекарственных средств на его основе для предотвращения окислительной деградации. Таким образом, существует проблема создания водорастворимых антиоксидантов на основе 2-этил-6-метил-3-гидроксипиридина, сохраняющих эффективность в удалении активных форм кислорода, но значительно более устойчивых к воздействию кислорода воздуха.
Техническим результатом настоящего изобретения является повышение устойчивости производных 2-этил-6-метил-3-гидроксипиридина к воздействию кислорода воздуха при сохранении биологической антиоксидантной активности. Технический результат достигается путем получения новых сульфопроизводных 2-этил-6-метил-3-гидроксипиридина.
Настоящее изобретение предоставляет новое соединение общей формулы (I)
(I),
где R1 означает H или SO3H; R2 означает H или SO3H.
Воплощениями изобретения являются соединение формулы (1)
(1)
и соединение формулы (2)
(2)
Соединения (1) и (2) могут быть использованы в качестве антиоксидантов при производстве лекарственных средств.
Термин «лекарственное средство» используется в настоящем изобретении в значении, установленном Федеральным законом от 12.04.2010 N 61-ФЗ (ред. от 28.11.2018) "Об обращении лекарственных средств", статья 4.
Термин «производство» лекарственного средства означает производство лекарственного средства в значении, установленном Федеральным законом от 12.04.2010 N 61-ФЗ (ред. от 28.11.2018) "Об обращении лекарственных средств", статья 4, а именно как деятельность по производству лекарственных средств организациями-производителями лекарственных средств на одной стадии, нескольких или всех стадиях технологического процесса, а также по хранению и реализации произведенных лекарственных средств.
Лекарственное средство настоящего изобретения может быть произведено в разных лекарственных формах, которые соответствуют способам его введения и применения и обеспечивают достижение необходимого лечебного эффекта, например, с использованием методов и фармацевтических процедур, хорошо известных из уровня техники и описанных в Фармацевтическом научном справочнике Ремингтона. Remington's Pharmaceutical Sciences, seventeenth edition, ed. Alfonso R. Gennaro, Mack Publishing Company, Easton, Pa., Eighteenth edition, 1990. Примеры лекарственных форм настоящего изобретения включают без ограничения все и любые формы подходящие для инъекционного, интраназального, трансдермального, бокального, сублингвального, и перорального введения.
Предпочтительно, соединения (1) и (2) будут использоваться в составе жидких лекарственных форм с содержанием от 1,0 до 50,0 мас. %.
Лекарственные формы могут содержать вспомогательные вещества.
Термин «вспомогательное вещество» относится к веществам неорганического или органического происхождения, используемым в процессе производства, изготовления лекарственных препаратов для придания им необходимых физико-химических свойств.
Такими вспомогательными веществами являются растворители и наполнители, консерванты, поверхностно-активные вещества (ПАВ), пленкообразователи, регуляторы рН среды, и корригенты.
Следующие примеры демонстрируют изобретение. Примеры имеют иллюстративное значение и не предназначены для ограничения объема изобретения.
Пример 1.
Пример иллюстрирует получение соединений 1 и 2 настоящего изобретения.
В 250 мл водного раствора 2-этил-6-метил-3-гидроксипиридина гидрохлорида (17,4 г; 0,1 моля), натрия метабисульфита (19,0 г; 0,1 моля), и 1 мг сульфата железа при рН 4,9 и перемешивании пропускали ток воздуха (содержание кислорода 21%) при 50°С в течение 72 ч. При комн. температуре раствор довели до рН 1-2 раствором 1 н. серной кислоты и продували воздухом до полного удаления сернистого газа. Далее, раствор довели до рН 7-7,5 раствором NaOH, упарили досуха в вакууме, остаток экстрагировали ацетоном до удаления непрореагировавшего исходного основания пиридина, затем растворили в минимуме воды, довели до рН 4-5 раствором 1 н. серной кислоты и упарили в вакууме досуха. Сухой остаток экстрагировали длительно метанолом. Из метанольного раствора упариванием получили смесь соединений 1 и 2, которые разделили методом препаративной высокоэффективной жидкостной хроматографии (ВЭЖХ) высокого давления на колоннах диаметром 21 мм заполненных обращенной фазой С18 в режиме градиентного элюирования, подвижная фаза ацетонитрил/0,1% муравьиная кислота (A/B).
Соединение (1). Выход 14% в расчете на исходный 2-этил-6-метил-3-гидроксипиридин. ЯМР 1Н (ДМСО-d6), δ-шкала: 1,16 (3Н, d); 2,35 (3H, s); 2.72 (2H, d); 7,13 (1Н, s); 10,38 (1H, s). Масс-спектр, m/z: 217,04 (100%). ИК-спектр, см-1: 1176-1264 (S=O).
Соединение (2). Выход 8% в расчете на исходный 2-этил-6-метил-3-гидроксипиридин. ЯМР 1Н (ДМСО-d6), δ-шкала: 1,25 (3Н, d); 2,53 (3H, s); 3.09 (2H, d); 7,69 (1Н, s); 11,48 (1H, s). Масс-спектр, m/z: 217,04 (100%). ИК-спектр, см-1: 1176-1264 (S=O).
Пример 2.
Пример иллюстрирует антиоксидантную активность соединений настоящего изобретения на модели окислительного стресса.
Моделирование вызванной окислительным стрессом гепатотоксичности производили на культуре клеток печени HepG2 с использованием перекиси водорода (Н2О2) и оценивали эффективность соединений как антиоксидантов c использованием спектрофотометрического МТТ теста, построенного на принципе, что живые клетки превращают МТТ (тетразолиевый краситель 3-(4,5-диметилтиазол-2-ил)-2,5-дифенил-тетразолиум бромид) в нерастворимый формазан. Siddiqui et al., Front. Pharmacol. 2018, 9:797. Jiang et al., Oxid. Med. Cell Longev. 2014, 2014:310504. Клетки печени HepG2 пре-инкубировали при плотности 1x104 клеток/ячейку в культуральной среде без или с добавлением с 200 мкМ соединения 1, соединения 2, и вещества сравнения (2-этил-6-метил-3-гидроксипиридина сукцината или 3-ГПС) в течение 20 мин, затем добавили Н2О2 в цитотоксической концентрации 150 мкМ и клетки инкубировали 6 ч, после чего среду заменили, добавили 50 мкг МТТ, инкубировали еще 4 ч, среду отделили от кристаллов формазана, добавили в каждую лунку 200 мкл ДМСО для растворения кристаллов и измеряли поглощение при 550 нм. В контроле клетки не подвергались воздействию соединений и Н2О2. Результаты по выживаемости представлены в Таблице 1 в процентах к контролю как среднее значение ± средняя ошибка в каждой группе (n=10). Статистические различия между группами оценивали с использованием t-критерия Стьюдента. Различия были признаны достоверными при уровне значимости p <0,05.
Таблица 1. Эффект соединений 1 и 2 на выживаемость клеток HepG2
* Достоверное отличие от «Н2О2» (p<0,05).
Таблица 1 показывает, что Н2О2 достоверно вызывает гибель клеток по сравнению с контролем, тогда как соединения 1, 2 и вещество сравнения достоверно увеличивают выживаемость клеток подвергнутых воздействию H2O2, что указывает на антиоксидантные свойства этих соединений.
Пример 3
Этот пример показывает, что соединения настоящего изобретения защищают печень при окислительном стрессе, вызванном CCl4.
Модель окислительного стресса с использованием тетрахлорида углерода (CCl4) была использована для оценки гепатопротекторного действия соединений 1 и 2. CCl4 относится к классу гепатотоксинов, которые действуют после метаболической активации. CCl4 метаболизируется с участием цитохрома p450 (CYP2E1), образуя реакционно-способный свободный радикал CCl3•, который реагирует с кислородом, образуя трихлорометилпероксил-радикал CCl3OO•, вызывающий перекисное окисление липидов и острый токсический гепатит. Weber LW et al., Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 2003, 33(2):105-36. Крысы-самцы Вистар получили за 48 ч, 24 ч, и 2 ч до введения CCl4 три в.б. инъекции физ. р-ра (контроль, n=6), 50 мг/кг соединения 1 (n=6), 50 мг/кг соединения 2 (n=6), или 50 мг/кг 2-этил-6-метил-3-гидроксипиридина сукцината (3-ГПС, вещество сравнения, n=6) и далее получили однократную в.б. инъекцию CCl4 в дозе 0,4 мг/кг, что вызвало острый токсический гепатит. Эффективность тестируемых соединений оценивали по активности ферментов аланинтрансаминазы (АЛТ) и аспартат трансаминазы (АСТ) в сыворотке крови через 48 ч после введения CCl4. Результаты представлены в Таблице 2 как среднее значение ± средняя ошибка активности ферментов АЛТ или АСТ в сыворотке в каждой группе. Для сравнения даны результаты анализов в группе интактных крыс (n=10). Статистические различия между группами оценивали с использованием t-критерия Стьюдента. Различия были признаны достоверными при уровне значимости p <0,05.
Таблица 2. Эффект соединений 1 и 2 на активность АЛТ и АСТ.
*Достоверное отличие от «Физ. р-р + CCl4» (p<0,05).
Таблица 2 показывает, что инъекция CCl4 вызвает достоверное повышение активности ферментов АЛТ и АСТ в сыворотке крови, что указывает на развитие острого токсического гепатита. Соединения 1 и 2 проявляют достоверный защитный антоксидантный эффект, сравнимый с эффектом вещества сравнения, препятствуя развитию гепатотоксичности в условиях окислительного стресса вызванного введением CCl4.
Пример 4
Этот пример показывает, что соединения 1 и 2 более устойчивы к действию кислорода воздуха, чем исходный 2-этил-6-метил-3-гидроксипиридина сукцинат.
Сравнительную оценку устойчивости к действию кислорода воздуха соединений 1 и 2 настоящего изобретения и вещества сравнения 2-этил-6-метил-3-гидроксипиридина сукцината (3-ГПС) проводили в 5% водных растворах указанных соединений при рН 4,9 в условиях свободного доступа к кислороду воздуха при 60°С в течение 2 недель. Анализ образцов растворов соединений 1 (n=4) и 2 (n=4) проводился методом ВЭЖХ как указано в примере 1. Анализ образцов растворов вещества сравнения (n=4) проводился методом ВЭЖХ на колонке Luna 5 u C18 100А, 250х4,6 мм в режиме градиентного элюирования, подвижная фаза 0,07% фосфорная кислота-вода/0,07% фосфорная кислота-ацетонитрил (A/B). Изменение содержания вещества в образцах после двух недель эксперимента рассчитывалось в процентах по формуле ΔС=100%∙(Ct-C0)/C0, где Ct – концентрация вещества в растворе после двух недель опыта, C0 – исходная концентрация вещества. Результаты показаны в Таблице 3 как среднее значение ± средняя ошибка изменения концентрации вещества (ΔС) из четырех опытов. Статистические различия между группами оценивали с использованием t-критерия Стьюдента. Различия были признаны достоверными при уровне значимости p <0,05.
Таблица 3. Изменение содержания соединений в образцах после двух недель опыта.
*Достоверное отличие от «3-ГПС» (p<0,05).
Таблица 3 показывает, что в условиях свободного доступа к кислороду воздуха соединения 1 и 2 достоверно более устойчивы, чем вещество сравнения, и содержание основного вещества в условиях опыта снижается на 0,3 и 0,7% для соединений 1 и 2, соответственно, против снижения на 6,3% для вещества сравнения.
Пример 5
Приготовление ампулированных растворов соединений 1 и 2.
Соединения 1 или 2 смешивали с водой для инъекций в количествах, указанных в Таблице 4, в асептических условиях для приготовления стерильного раствора, без добавления консервантов. Полученным раствором заполняли ампулы объемом 2, 5, или 10 мл.
Таблица 4. Ампулированные растворы соединений 1 и 2.
Настоящее изобретение относится к применимым в фармакологии и медицине соединениям формул
и
Предложены новые антиоксиданты. 2 з.п. ф-лы, 4 табл., 5 пр.
1. Соединение общей формулы (I)
(I),
где R1 означает Н или SO3H; R2 означает Н или SO3H, при условии, что R1 и R2 одновременно не означают H.
2. Соединение по п. 1, где R1=H и R2=SO3H формулы (2)
(2).
3. Соединение по п. 1, где R1=SO3H и R2=H формулы (3)
(3).
WO 1992019597 A1, 12.11.1992 | |||
СОЛЬ 2-ЭТИЛ-6-МЕТИЛ-3-ГИДРОКСИПИРИДИНА С ФУМАРОВОЙ КИСЛОТОЙ, ОБЛАДАЮЩАЯ МЕТАБОЛИЧЕСКОЙ И КАРДИОПРОТЕКТОРНОЙ АКТИВНОСТЬЮ, И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2008 |
|
RU2365582C1 |
Способ профилактики рецидивов птеригиума после хирургического лечения | 2017 |
|
RU2653814C1 |
СТАБИЛЬНАЯ КРИСТАЛЛИЧЕСКАЯ ФОРМА 2-ЭТИЛ-6-МЕТИЛ-3-ОКСИПИРИДИНА СУКЦИНАТА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2011 |
|
RU2453538C1 |
Т.А | |||
Воронина, Психофармакология и биологическая наркология, 2001, т | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Weber LW | |||
et al., Crit Rev Toxicol., 2003, 33 (2), стр | |||
Транспортер для перевозки товарных вагонов по трамвайным путям | 1919 |
|
SU105A1 |
Авторы
Даты
2019-11-20—Публикация
2019-05-16—Подача