Изобретение относится к оборудованию для испытаний пневматических шин, в частности к внутриколесным устройствам для измерения деформаций пневматической шины при ее качении.
Известно устройство для замера радиальной и тангенциальной деформации бескамерной шины [авторское свидетельство на изобретение СССР №137696, МПК: GO1B 7/16, G01N 3/56. Бюл., №6, опубл. 01.01.1961 г.] в виде герметичного корпуса, вмонтированного изнутри в обод шины и снабженного электрическими датчиками, преобразующими деформации шины в электрический сигнал. Для измерения тангенциальной деформации шины использован ролик, опирающийся на внутреннюю поверхность шины.
Недостатками устройства является низкая точность измерения тангенциальной деформации шины за счет проскальзывания измерительного ролика.
Известно устройство для измерений деформаций пневматической шины [авторское свидетельство на изобретение SU №1057792, МПК: G01M 7/06, опубл. 30.11.1983 г.], выполненное в виде телескопического штока одной стороной прикрепленного к ободу колеса через универсальный шарнир, второй стороной - к внутренней поверхности камеры шины через шаровой шарнир, снабженное реостатными преобразователями, позволяющими измерять радиальную, тангенциальную, поперечную (боковую) деформации пневматической шины.
Недостатками устройства является необходимость установки внутрь пневматической шины механического устройства с телескопическим штоком, при этом взаимные перемещения деталей устройства регистрируются при помощи реостатных датчиков перемещения. Наличие механизма со сложными кинематическими связями, приводящих к появлению люфтов снижают точность измерения радиальной, тангенциальной, поперечной (боковой) деформации пневматической шины, кроме того, при аварийном падении внутреннего давления воздуха в шине происходит повреждение его механических деталей, а также повреждение внутренней поверхности пневматической шины.
Техническим результатом предлагаемого устройства является повышение точности измерения радиальной, тангенциальной, поперечной (боковой) деформации пневматической шины при ее движении, а также уменьшение риска ее повреждения в случае аварийного падения внутреннего давления воздуха.
Указанный технический результат достигается за счет применения неконтактного оптического измерения перемещений светящихся марок, закрепленных на внутренней поверхности пневматической шины и перемещающихся совместно при ее деформации. Для этого на ободе колеса, внутри пневматической шины неподвижно установлен фотоприемник-преобразователь перемещений, а напротив, на оптической оси на внутренней поверхности пневматической шины, закреплены (2*N+1)*(2*N+1) светящихся марок, расположенных в узлах прямоугольной сетки заданного размера. Деформации пневматической шины определяются путем математической обработки измерения приращений координат светящихся марок на видеоизображении, перемещающихся относительно неподвижного фотоприемника-преобразователя при движении колеса по опорной поверхности при помощи специального решающего устройства, позволяющего вычислить ортогональные компоненты деформации пневматической шины.
Использование симметричной сетки размерностью (2*N+1)*(2*N+1), где N≥2 позволяет повысить точность измерений компонент деформации шины, а наличие дополнительной марки, расположенной в среднем ряду, совпадающим с центральной плоскостью вращения колеса - определять направление вращения колеса.
Сущность изобретения заключается в том, что датчик деформаций пневматической шины содержащий систему (2*N+1)*(2*N+1) (где N≥1) светящихся марок, закрепленных на внутренней поверхности пневматической шины в узлах симметричной прямоугольной сетки заданного размера, причем по меньшей мере одна дополнительная марка размещена в центральной плоскости вращения колеса, последовательно соединенные фотоприемник-преобразователь перемещений светящихся марок и решающее устройство, при этом фотоприемник-преобразователь установлен на ободе колеса внутри пневматической шины.
На фиг. 1 показан общий вид устройства. Устройство содержит (2*N+1)*(2*N+1) (где N≥1) светящихся марок 1, которые могут быть выполнены в виде светодиодов с автономными источниками питания, закрепленные на внутренней поверхности пневматической шины в узлах симметричной прямоугольной сетки заданного размера, причем по меньшей мере одна дополнительная марка размещена в центральной плоскости вращения колеса (фиг. 1), фотоприемник-преобразователь 2, который может быть выполнен в виде видеокамеры высокого разрешения, преобразующий изображение светящихся марок в электрический сигнал и установленный на ободе колеса 4 внутри пневматической шины 5, и решающее устройство 3, которое может быть выполнено в виде микроконтроллера, установленного вне колеса и предназначенного для вычисления радиальной, тангенциальной, поперечной (боковой) деформации пневматической шины 5 на основе электрического сигнала, полученного от фотоприемника-преобразователя 2.
На фиг. 2 и 3 представлены оптические схемы для определения соответственно радиальной, тангенциальной или поперечной деформаций шины, используемые при расчете компонент деформаций шины 5 в решающем устройстве 3.
Устройство работает следующим образом: светящиеся марки 1 закрепляют на внутренней поверхности пневматической шины 5 напротив фотоприемника-преобразователя 2, закрепленного на ободе колеса 4. При качении колеса с пневматической шиной 5 под действием внешних нагрузок происходит ее деформация в зоне контакта с опорной поверхностью. При этом совместно с внутренней поверхностью шины перемещаются светящиеся марки 1 относительно обода колеса 4 с закрепленным фотоприемником-преобразователем 2, вызывая изменение изображения, сигнал которого подается на вход решающего устройства 3 в котором вычисляются значения ортогональных приращений относительной деформации шины. Между относительными изменениями координат марок и их оптическими изображениями существует линейная взаимосвязь [Савельев И.В. Курс общей физики, Т. 3. Оптика, атомная физика, физика атомного ядра и электронных частиц. - М.: Наука, 1970. С. 34-47.], позволяющая определять деформации в точке внутренней поверхности пневматической шины относительно начального положения марок с достаточной для практики погрешностью [фиг. 2, 3].
Предлагаемое устройство для измерения деформаций пневматической шины по сравнению с известным позволяет повысить точность определения деформаций пневматической шины за счет отсутствия кинематических зазоров в механизме, а также измерения перемещений нескольких точек внутренней поверхности пневматической шины. Кроме этого, применение неконтактного способа измерения деформации позволяет значительно снизить риск повреждения шины и элементов устройства при аварийном падении внутреннего давления воздуха в шине в процессе испытаний.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для измерения деформаций пневматической шины | 1982 |
|
SU1057792A2 |
Устройство для измерения деформаций пневматической шины | 1981 |
|
SU985735A1 |
КОЛЕСО ТРАНСПОРТНОГО СРЕДСТВА | 1994 |
|
RU2125939C1 |
БЕЗОПАСНОЕ КОЛЕСО ТРАНСПОРТНОГО СРЕДСТВА | 2016 |
|
RU2653913C2 |
Устройство для измерения деформаций пневматической шины | 1983 |
|
SU1158887A1 |
Устройство для измерения деформации пневматической шины | 1981 |
|
SU993085A1 |
ЛАЗЕРНЫЙ ДАЛЬНОМЕР (ВАРИАНТЫ) | 2007 |
|
RU2340871C1 |
Узел колеса с шиной | 1987 |
|
SU1595334A3 |
КОЛЕСО ТРАНСПОРТНОГО СРЕДСТВА | 1995 |
|
RU2089403C1 |
УСТРОЙСТВО для ИЗМЕРЕНИЯ ДЕФОРМАЦИИ | 1969 |
|
SU253605A1 |
Изобретение относится к оборудованию для испытаний пневматических шин, в частности к внутриколесным устройствам для измерения деформаций пневматической шины при ее качении. Датчик для измерения деформаций пневматической шины, содержащий оптический регистратор, решающее устройство, установленные на ободе колеса внутри пневматической шины, три светящиеся марки, установленные на внутренней поверхности пневматической шины, причем геометрические центры марок образуют равносторонний треугольник с известными размерами, одна из вершин которого располагается в центральной плоскости вращения колеса, а центр описанной окружности треугольника располагается напротив оптического регистратора. Технический результат - повышение точности измерения трех основных компонент деформаций пневматической шины при ее движении, а также уменьшение риска ее повреждения в случае аварийного падения внутреннего давления воздуха. 3 ил.
Датчик деформаций пневматической шины, содержащий систему (2*N+1)*(2*N+1) (где N≥1) светящихся марок, закрепленных на внутренней поверхности пневматической шины в узлах симметричной прямоугольной сетки заданного размера, причем по меньшей мере одна дополнительная марка размещена в центральной плоскости вращения колеса, последовательно соединенные фотоприемник - преобразователь перемещений светящихся марок и решающее устройство, при этом фотоприемник-преобразователь установлен на ободе колеса внутри пневматической шины.
JP 2004163140 A, 10.06.2004 | |||
JP 9193627 A, 29.07.1997 | |||
US 9834045 B2, 05.12.2017 | |||
US 4257264 A1, 24.03.1981. |
Авторы
Даты
2019-11-26—Публикация
2019-02-11—Подача