Изобретение относится к локационной технике, а именно к способам построения обнаружителей сигналов в многопозиционных радиолокационных системах.
Известно устройство радиолокационного распознавания воздушных объектов, состоящее из последовательно соединенных блока обработки радиолокационной информации, формирователя доплеровских портретов, классификатора первого уровня и классификатора второго уровня, три входа которого соединены с тремя выходами классификатора первого уровня, а выход является выходом всего устройства, отличающееся тем, что в него введены последовательно соединенные со вторым выходом блока обработки радиолокационной информации вычислитель модуля трассовой скорости и пороговое устройство, выход которого соединен со вторым входом классификатора первого уровня, и формирователь эталонных данных, выход которого соединен с третьим входом классификатора первого уровня.
Известен триангуляционный способ построения двумерного радиолокационного изображения воздушной цели в РЛС с инверсным апертурным синтезом и узкополосным зондирующим сигналом. Изобретение относится к радиолокации и может быть использовано для повышения качества распознавания воздушных целей. Цель изобретения - повысить точность построения радиолокационного изображения, чем снизит ошибки распознавания целей. Для этого предлагается анализировать структуру доплеровских портретов цели, полученных при изменении ракурса локации на 0,5°. На основе анализа расчетным путем определяются координаты локальных рассеивателей поверхности цели в системе координат, связанной с центром сопровождения цели. Способ инвариантен к положению и изменению доплеровской частоты центра сопровождения цели, а также лишен множества ошибок построения изображения, связанных с различными допущениями, принятыми в прототипе [1].
Известно устройство радиолокационного распознавания воздушных объектов, состоящее из последовательно соединенных блока обработки радиолокационной информации, формирователя доплеровских портретов, классификатора первого уровня и классификатора второго уровня, а также из блока эталонных доплеровских портретов, выход которого соединен со вторым входом классификатора первого уровня, три выхода которого соединены с тремя входами классификатора второго уровня, выход которого является выходом всего устройства, отличающееся тем, что в него введены последовательно соединенные вычислитель вертикальной составляющей скорости, вычислитель трассовой скорости и параметрический классификатор, выход которого соединен с четвертым входом классификатора второго уровня, второй выход блока обработки радиолокационной информации соединен со входом вычислителя вертикальной составляющей скорости и вторым входом параметрического классификатора, а третий его выход - со вторым входом вычислителя трассовой скорости.
Известен многополяризационный способ распознавания воздушных целей. Способ предусматривает облучение летательного аппарата, выбранного для распознавания, последовательностями импульсных сигналов, в которых каждый импульс имеет определенную, отличную от других, поляризацию, прием отраженных сигналов и их анализ, позволяющий сформировать поляризационный портрет цели, используемый в качестве информативного признака распознавания [2].
Все выше перечисленные способы и устройства не учитывают преимуществ многопозиционной радиолокации. Благодаря одновременному наблюдению цели с различных направлений объем сигнальной информации в МП РЛС существенно возрастает по сравнению с однопозиционной РЛС. Измеряя амплитуду, фазу и поляризацию принятых разнесенными позициями сигналов, можно определять размеры, форму и характеристики собственного вращения цели точнее и за меньшее время.
Воспользуемся методами спектрального анализа и применим их к измерениям огибающих квадратов амплитуд сигналов, принимаемых одновременно разнесенными в пространстве РЛС или вынесенными приемными позициями на взаимно-ортогональных поляризациях. В этом случае комплексные амплитуды сигналов будут пропорциональны комплексным амплитудам поляризационной матрицы рассеяния (ПМР), которые в свою очередь зависят от ракурса наблюдения цели . Они могут быть записаны в соответствии с выражением:
где - волновое число;
- координата n-го рассеивателя в продольном направлении (вдоль оси X);
- координата n-го рассеивателя в поперечном направлении (вдоль оси Y).
Здесь и в дальнейшем - модуль комплексного коэффициента отражения цели при излучении сигнала 1-й РЛС на j-ой поляризации и его приеме k-ой приемной позицией на i-ой поляризации (фиг. 2).
Если МП РЛС содержит одну приемо-передающую, а остальные приемные позиции, то в этом случае комплексные элементы ПМР будут описываться выражением:
где .
При этом предполагалось, что ось X совпадает с линией визирования приемопередающей позиции. Если предположить, что измерения проводятся в небольшом секторе углов , то можно считать , а . В этом случае выражения (1) и (2) примут вид:
где ; .
Интенсивности сигналов, принимаемых МП РЛС, будут пропорциональны квадратам амплитуд элементов ПМР, которые могут быть найдены с использованием выражений (3) и (4). Например, при использовании (3) можно получить:
Аналогичное выражение можно получить при использовании (4). Как видно из выражения (5), результаты измерений сигналов в МП РЛС пропорциональны суммарной эффективной поверхности рассеяния (ЭПР) всех отражающих элементов цели, а также сумме гармоник, период которых определяется разностными координатами рассеивателей в поперечном направлении, а амплитуды сигналов, отраженные рассеивателями, пропорциональны произведению амплитудных элементов.
Итак, применяя к результатам измерений интенсивностей сигналов, принятых МП РЛС на взаимно-ортогональных поляризациях, методы спектрального анализа, можно определить характеристики цели в поперечном направлении. Обычно энергетический спектр, найденный по измерениям интенсивностей сигналов, называют некогерентным «портретом» цели.
В дальнейшем энергетический спектр флуктуации интенсивностей сигналов, принятых в МП РЛС, будем называть некогерентным «портретом» (НП) цели в поперечном направлении. При этом НП цели в поперечном направлении, найденный по измерениям интенсивности сигнала на основной поляризации, будет характеризовать распределение всех, а на кроссовой - только деполяризующих рассеивателей в поперечном направлении. Однако, поскольку измерения на кроссовой поляризации производятся при отношениях сигнал/шум на (6÷10) дБ меньше, чем на основной, то информация о геометрических характеристиках, получаемая на кроссовой поляризации, будет с большими ошибками. Для уменьшения ошибок за счет низкого отношения сигнал/шум при определении поперечных размеров между деполяризующими рассеивателями цели можно использовать совместно измерения амплитуд и разности фаз сигналов, принятых в каждой приемной позиции на взаимно-ортогональных поляризациях. В этом случае в каждой приемной позиции будут измеряться комплексные амплитуды сигналов, полученные в результате перемножения комплексных амплитуд сигналов, принятых на взаимно-ортогональных поляризациях. Эти измерения будут пропорциональны произведению комплексных элементов ПМР, характеризующих рассеивающие свойства цели на основной и кроссовой поляризациях, которое может быть найдено при использовании выражений (3) или (4). Например, при использовании выражения (3) можно получить:
Аналогичное выражение можно получить и при использовании выражения (4). В (6) N обозначает количество всех рассеивателей, a - деполяризующих. Как видно из выражения (6), измерения, полученные в результате перемножения комплексных амплитуд сигналов на взаимно-ортогональных поляризациях, принятых в каждой позиции МП РЛС, пропорциональны сумме комплексных гармоник, период которых определяется разностными координатами деполяризующих и не деполяризующих рассеивателей, а амплитуда равна произведению амплитудных элементов ПМР, характеризующих преобразование поляризации при отражении. Следовательно, применяя процедуру спектрального анализа к таким измерениям, можно получить информацию о поперечных расстояниях между парами всех рассеивателей, между парами деполяризующих, а также тех и других одновременно.
Рассмотрим случай, когда измерения интенсивностей сигналов в МП РЛС производится равнодискретно по углу в полярной системе координат с центром, совпадающим центром масс, в виде:
где ;
- квадрат амплитудного элемента ПМР, характеризующий интенсивность сигнала, принятого k-ой позицией МП РЛС на соответствующей поляризации;
- дельта функция;
- количество измерений;
- дискретность измерения по углу.
Применяя к данным измерениям преобразование Фурье, получим:
где - текущая координата вдоль оси ;
- оператор обратного преобразования Фурье;
- спектр измерений, представленных выражением (7).
Для получения НП цели в поперечном направлении необходимо найти модуль функции:
В случае если необходимо определять распределение рассеивателей с учетом их деполяризующих свойств, то процедуру спектрального анализа необходимо применять к комплексным измерениям, полученным в результате перемножения комплексных амплитуд сигналов, принятых на взаимно-ортогональных поляризациях в каждой приемной позиции. Если измерения производятся равнодискретно по углу, то их можно представить в виде:
В отличие от измерений, представленных выражением (7), данные измерения являются комплексными. При этом фаза каждого измерения равна разности фаз сигналов, принятых на взаимно-ортогональных поляризациях в каждой позиции МП РЛС. Таким образом, при данном способе обработки сигналов производится дополнительный учет фазовой структуры поля, рассеянного целью без привязки по фазе приемных позиций МП РЛС между собой. Применяя к данным измерениям преобразование Фурье, получим:
где - спектр когерентных измерений комплексных амплитуд сигналов, отраженных от цели и принятых различными приемными позициями МП РЛС на взаимно-ортогональных поляризациях, модуль которого является когерентным портретом цели в поперечном направлении;
- оператор свертки.
Таким образом, из выражения (11) видно, что функция является сверткой функций и , модули которых являются когерентными портретами цели в поперечном направлении на основной и кроссовой поляризациях. Модуль функции будет одновременно характеризовать распределение всех рассеивающих центров и только деполяризующих в поперечном направлении и может быть найден в соответствии с выражением:
Однако использование преобразования для построения НП в поперечном направлении имеет ряд недостатков, которые обусловлены ограниченностью интервала измерений по углу .
Применяя преобразование Фурье к участку измерений, представленных, например, в виде произведения (7) или (10), фактически находится спектр процесса, который представляется в виде произведения двух функций, вид которых показан на фиг. 3, а:
где - функция «окна» наблюдения;
- измерения, ограниченные по углу .
Функция (фигура 3, г) в этом случае получается в виде свертки двух функций:
Первая из этих функций будет определяться распределением рассеивателей в поперечном направлении полностью определяется видом функции «окна» . Аналогичные рассуждения справедливы и для функции . Например, если «окно» прямоугольное, то преобразование Фурье от него будет иметь вид (фигура 3, в):
А функции или будут представлять собой суперпозицию функций с различными весами. При этом разрешающая способность будет определяться протяженностью данной функции по уровню 0,5 и составит при одинаковых коэффициентах отражения разрешаемых рассеивателей. Кроме того, функция имеет боковые лепестки, уровень первого из которых составляет - 13,6 дБ, что может приводить к маскировке отдельных рассеивателей с малыми коэффициентами отражения. С целью снижения уровня боковых лепестков возможно применение непрямоугольных «окон», например «хемминга», и др. Но в этом случае ухудшается разрешающая способность и возникают потери, для компенсации которых необходимо увеличивать отношение сигнал/шум, а также увеличивать интервал измерений по углу.
Кроме того, поскольку центральный пик НП цели в поперечном направлении является максимальным из всех пиков, то и боковые лепестки, соответствующие этому пику, имеют максимальный уровень из всех остальных, что может привести к маскировке соседний пиков. Поэтому желательно исключить центральный пик из НП цели в поперечном направлении, поскольку он не несет информации о геометрических характеристиках цели. Это можно сделать, исключив постоянную составляющую из исходных измерений, в соответствии с выражением:
В этом случае НП цели в поперечном направлении будет иметь пики, соответствующие только разностным координатам рассеивателей. Аналогичные результаты могут быть получены при наличии в системе двух позиций, одна из которых приемо-передающая, а вторая - приемная. В этом случае измерения производятся последовательно во времени при наличии относительного движения цели. Вынесенная позиция при этом может быть использована для определения угловой скорости вращения цели, с целью масштабирования полученных измерений по углу и построения некогерентного портрета в поперечном направлении. Аналогичное использование двух разнесенных РЛС при проведении взаимной корреляционной обработки квадратов огибающих амплитуд принимаемых сигналов позволяет также определить скорость относительного вращения цели и использовать ее для масштабирования измерений по углу поворота цели. Одним из признаков распознавания целей может явиться их эффективная протяженность (эффективный размер) НП в поперечном направлении , которая может быть найдена из выражения:
где функция может обозначать или нормированную функцию , описываемую выражением (8), или нормированную функцию , описываемую выражением (11);
- нормирующий коэффициент.
При этом эффективный размер будет характеризовать соответственно, расстояния между всеми или только деполяризующими рассеивателями, или теми и другими одновременно. Нормирующий коэффициент находится из условия:
и может быть найден в соответствии с выражением:
Воспользовавшись равенством Парсеваля, можно получить, например, для функции следующее выражение:
Аналогичное выражение можно получить и для . Если измерения представлены в равнодискретном виде, например, в виде (7) или (10), выражение для нормирующего коэффициента с учетом (20) будет иметь вид:
Для того чтобы понять физическую сущность данного признака рассмотрим простейший идеализированный пример. Предположим, что цель состоит из двух рассеивателей, расстояние между которыми в поперечном направлении равно . Выражение, описывающее нормированный НП, можно записать в виде:
Квадрат эффективного размера такого идеализированного НП цели в поперечном направлении, найденного в соответствии с выражением (17), будет равен:
Таким образом, из выражения (23) видно, что квадрат эффективного размера НП цели в поперечном направлении является весовой суммой квадратов разностных координат между рассеивателями с весами, пропорциональными произведению их коэффициентов отражения на соответствующих поляризациях. Для получения выражения, которое позволяет определить эффективный размер непосредственно по измерениям вида (7), (10) воспользуемся выражением (20) и свойством преобразования Фурье:
Аналогично это свойство может быть записано и для функции . С учетом выражения (24) квадрат эффективного размера может быть найден:
Если измерения представлены в равнодискретной форме в виде (7), тогда выражения для квадрата эффективного размера может быть записано в виде:
Для получения непосредственного эффективного размера дополнительно необходимо извлечь квадратный корень. Аналогично может быть получено выражение для измерений представленных формулой (10). Можно показать, что эффективный размер определяется коэффициентом корреляции между измерениями, а также их средним значением и дисперсий , следующим образом:
где - коэффициент корреляции между измерениями и сдвинутыми на один отсчет .
Из данного выражения можно определить диапазон измерения . Учитывая, что может изменяться в пределах , будет принимать значения от 0 до , где - интервал однозначности.
Следовательно, величина будет определять эффективный размер в долях интервала однозначности.
Таким образом, можно сделать вывод, что эффективный размер НП цели в поперечном направлении характеризует геометрические размеры цели в поперечном направлении, а также учитывает рассеивающие свойства отдельных элементов конструкции цели. Кроме того, данный признак может быть рассчитан по измерениям, полученным в МП РЛС без существенных вычислительных затрат. Этот признак также может быть получен аналогично вышеизложенному при наличии одной приемопередающей и одной приемной позиции.
Используя полученные выше выводы, разработан способ определения распределения рассеивателей цели в поперечном направлении с учетом их поляризационно-рассеивающих свойств. Как было показано выше, отношение сигнал/шум на кроссовой поляризации существенно меньше, чем на основной. Поэтому для определения поперечных размеров с учетом размеров между деполяризующими рассеивателями целесообразно использовать произведения измерений на взаимно-ортогональных поляризациях с учетом их разности фаз.
При наличии в системе РЛС только двух позиций, одна из которых приемо-передающая, а вторая только приемная, измерения производятся последовательно во времени. Это возможно только при наличии относительного движения цели. Вынесенная позиция при этом используется для определения угловой скорости вращения с целью масштабирования полученных измерений (Фиг. 5). Для реализации этого способа необходимо иметь две РЛС, одна из которых приемопередающая, а другая - только приемная. Приемо-передающая РЛС содержит схему выделения огибающей (СВО) амплитуд сигналов, принятых на основной поляризации, необходимую для работы блока определения угловой скорости вращения цели, и две схемы выделения огибающих амплитуд сигналов с выходов фазовых детекторов (ФД). Приемная РЛС содержит антенну, рассчитанную на прием сигналов основной поляризации. Порядок действий, позволяющих реализовать данный способ, следующий. По флуктуациям интенсивностей сигналов, принятых совмещенной и вынесенной приемными позициями, при использовании информации от датчиков об угловом положении (ДУП) цели, определяется угловая скорость вращения цели. В зависимости от величины угловой скорости вращения с помощью управляемого генератора импульсов (G) меняется скорость съема информации с выходов приемо-передающей РЛС. Последовательность измерений, полученных в результате опроса обоих выходов приемо-передающей РЛС, в течение некоторого времени накапливается в соответствующих накопителях. При этом на выходе накопителя формируется величины вида:
По окончании накопления полученные измерения поступают на входы фазовых преобразователей (ФП) (или любого другого анализатора спектра), который характеризует распределение как всех, так и только деполяризующих рассеивателей цели в поперечном направлении.
Предложенное изобретение иллюстрируется следующими графическими материалами:
Фиг. 1 - поляризационная матрица рассеяния.
Фиг. 2 - - модуль комплексного коэффициента отражения цели при излучении сигнала 1-й РЛС на j-ой поляризации и его приеме k-ой приемной позицией на i-ой поляризации.
Фиг. 3 - некогерентный портрет, полученный по измерениям с исключенным средним значением.
Фиг. 4 - НП цели.
Фиг. 5 - схема способа, позволяющего реализовать описанные операции.
На Фиг. 1 использовались следующие обозначения:
1 X;
2. Y;
3. Z;
4. β;
5. Xn;
6. εn;
7. ρn;
8. Yn.
На Фиг. 2 использовались следующие обозначения:
1. X;
2. Y;
3. Z;
4. m;
5. 1;
6.
7. k;
8.
9.
10.
11.
12.
13.
14.
15.
16. βm;
17.
18. βk.
На Фиг. 3 использовались следующие обозначения:
1.
2.
3.
4.
5.
6.
На Фиг. 4 использовались следующие обозначения:
1.
2. Y;
3.
4.
На Фиг. 5 использовались следующие обозначения:
1. Приемо-передающий РЛК.
2. Приемный РЛК.
3. Передатчик.
4. Антенный переключатель.
5. Приемник.
6. Датчик об угловом положении.
7. Фазовращатель на π/2.
8. Сумматор.
9. Схема выделения огибающей.
10. Фазовый детектор.
11. Измеритель Ω.
12. Генератор.
13. Ключ.
14. Накопитель.
15. Фазовый преобразователь.
16. Индикатор.
Литература
1. RU 2099742, 1997.
2. RU 2139553, 1999.
название | год | авторы | номер документа |
---|---|---|---|
РАДИОЛОКАЦИОННАЯ СТАНЦИЯ С ПОИМПУЛЬСНОЙ ПЕРЕСТРОЙКОЙ НЕСУЩЕЙ ЧАСТОТЫ, НЕЙРОСЕТЕВЫМ РАСПОЗНАВАНИЕМ ОБЪЕКТОВ И ИНВЕРСНЫМ СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ АНТЕННЫ | 2011 |
|
RU2439611C1 |
СПОСОБ ЭКСПЕРИМЕНТАЛЬНОЙ ПРОВЕРКИ ИНФОРМАЦИОННЫХ И ИДЕНТИФИКАЦИОННЫХ ВОЗМОЖНОСТЕЙ ДОПЛЕРОВСКИХ ПОРТРЕТОВ ВОЗДУШНЫХ ОБЪЕКТОВ | 2014 |
|
RU2571957C1 |
СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОЙ СКОРОСТИ ВОЗДУШНОЙ ЦЕЛИ В РЕЖИМЕ ПЕРЕСТРОЙКИ ЧАСТОТЫ ОТ ИМПУЛЬСА К ИМПУЛЬСУ | 2007 |
|
RU2326402C1 |
ТРИАНГУЛЯЦИОННЫЙ СПОСОБ ПОСТРОЕНИЯ ДВУМЕРНОГО РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ЦЕЛИ В РЛС СОПРОВОЖДЕНИЯ С ИНВЕРСНЫМ СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ. | 1995 |
|
RU2099742C1 |
МНОГОЧАСТОТНАЯ РАДИОЛОКАЦИОННАЯ СТАНЦИЯ С ИНВЕРСНЫМ СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ И ДВУХУРОВНЕВЫМ РАСПОЗНАВАНИЕМ ЦЕЛЕЙ | 2007 |
|
RU2358288C1 |
СПОСОБ ПОСТРОЕНИЯ ДВУМЕРНОГО РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ПРЯМОЛИНЕЙНО ЛЕТЯЩЕЙ ЦЕЛИ ПРИ МНОГОЧАСТОТНОМ УЗКОПОЛОСНОМ ЗОНДИРОВАНИИ | 1995 |
|
RU2099743C1 |
Способ распознавания радиолокационных объектов | 2017 |
|
RU2667516C1 |
Способ оценки пространственного размера воздушной цели по частотной протяженности доплеровского портрета | 2018 |
|
RU2679396C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ ИЗ ДОПЛЕРОВСКИХ ПОРТРЕТОВ ВОЗДУШНЫХ ОБЪЕКТОВ ПРИЗНАКОВ ИДЕНТИФИКАЦИИ С ИСПОЛЬЗОВАНИЕМ МЕТОДА СВЕРХРАЗРЕШЕНИЯ | 2015 |
|
RU2589737C1 |
СПОСОБ ВЫЯВЛЕНИЯ ПАРАМЕТРОВ ТРАЕКТОРНЫХ НЕСТАБИЛЬНОСТЕЙ МАЛОРАЗМЕРНОГО ВОЗДУШНОГО ОБЪЕКТА В ВИДЕ РАДИАЛЬНОГО УСКОРЕНИЯ ДВИЖЕНИЯ ДЛЯ РЕЖИМА СОПРОВОЖДЕНИЯ С ИСПОЛЬЗОВАНИЕМ СИГНАЛОВ С ПОИМПУЛЬСНОЙ ПЕРЕСТРОЙКОЙ НЕСУЩЕЙ ЧАСТОТЫ | 2009 |
|
RU2392640C1 |
Изобретение относится к радиолокации и может быть использовано для повышения качества распознавания радиолокационных целей. Достигаемый технический результат - повышение точности построения радиолокационного изображения, что, в свою очередь, снизит ошибки распознавания радиолокационных целей. Сущность изобретения заключается в том, что в способе определения поперечных размеров цели по данным двух разнесенных позиций в многопозиционных РЛС с учетом их поляризационно-рассеивающих свойств по флуктуациям интенсивностей сигналов, принятых совмещенной и вынесенной приемными позициями, при использовании информации от датчиков об угловом положении цели определяется угловая скорость вращения цели, при этом в зависимости от величины угловой скорости вращения с помощью управляемого генератора импульсов меняется скорость съема информации с выходов приемо-передающей РЛС, последовательность измерений, полученных в результате опроса обоих выходов приемо-передающей РЛС, в течение некоторого времени накапливается в соответствующих накопителях, по окончании накопления полученные измерения поступают на входы фазовых преобразователей и характеризуют распределение как всех, так и только деполяризующих рассеивателей цели в поперечном направлении. 5 ил.
Способ определения поперечных размеров цели по данным двух разнесенных позиций в многопозиционных РЛС с учетом их поляризационно-рассеивающих свойств, в котором по флуктуациям интенсивностей сигналов, принятых совмещенной и вынесенной приемными позициями, при использовании информации от датчиков об угловом положении (ДУП) цели определяется угловая скорость вращения цели, отличающийся тем, что в зависимости от величины угловой скорости вращения с помощью управляемого генератора импульсов (G) меняется скорость съема информации с выходов приемо-передающей РЛС, последовательность измерений, полученных в результате опроса обоих выходов приемо-передающей РЛС, в течение некоторого времени накапливается в соответствующих накопителях, по окончании накопления полученные измерения поступают на входы фазовых преобразователей, который характеризует распределение как всех, так и только деполяризующих рассеивателей цели в поперечном направлении.
МНОГОПОЛЯРИЗАЦИОННЫЙ СПОСОБ РАСПОЗНАВАНИЯ ВОЗДУШНЫХ ЦЕЛЕЙ | 1998 |
|
RU2139553C1 |
СПОСОБ ИЗМЕРЕНИЯ ПОПЕРЕЧНЫХ РАЗМЕРОВ РАДИОЛОКАЦИОННЫХ ОБЪЕКТОВ РЛС В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ | 1999 |
|
RU2150714C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ "НЕЛИНЕЙНЫХ" РАДИОЛОКАЦИОННЫХ ХАРАКТЕРИСТИК | 2003 |
|
RU2265230C2 |
СПОСОБ ЭКСПЕРИМЕНТАЛЬНОЙ ПРОВЕРКИ ИНФОРМАЦИОННЫХ И ИДЕНТИФИКАЦИОННЫХ ВОЗМОЖНОСТЕЙ ДОПЛЕРОВСКИХ ПОРТРЕТОВ ВОЗДУШНЫХ ОБЪЕКТОВ | 2014 |
|
RU2571957C1 |
ВСТАВКА ДОПОЛНИТЕЛЬНЫХ ДАННЫХ В КОДИРОВАННЫЙ СИГНАЛ | 2000 |
|
RU2251819C2 |
US 7864107 B1, 04.01.2011 | |||
JP 2013210207 A, 10.10.2013. |
Авторы
Даты
2019-12-04—Публикация
2019-05-08—Подача