Газогенераторная установка для автономного энергообеспечения Российский патент 2019 года по МПК F22B33/18 C10J3/86 

Описание патента на изобретение RU2709244C1

Изобретение относится к стационарным газогенераторным установкам для автономного энергообеспечения тепловой и электрической энергией бытовых жилых помещений, мастерских, ферм, теплиц, картофелехранилищ и т.д.

Известна газогенераторная установка «Энергоблок» для получения из твердых топлив и сгораемых бытовых и производственных отходов газа для выработки электрической и тепловой энергии.

Энергоблок включает газогенератор и электрогенератор, оборудование подготовки и подачи топлива, воздуха и воды, подогрева и циркуляции воды. Патент на изобретение RU 2174611 C1, МПК 7 F 01К 21/04, F01К 13/00, F23, 2001.

Недостатком известной установки является большой расход природного газа или жидкого топлива, или вырабатываемого газогенератором газа на предварительный подогрев сгораемых бытовых и производственных отходов низкой теплотворной способности, что приводит к низкому КПД установки и выбросов тепловых и вредных примесей в атмосферу.

Наиболее близким по технической сущности к заявленномуустройству является выбранный в качестве прототипа комплекс газотеплоэлектрогенераторный (патент RU№ 2303192, МПК F 22 В 33/18, C 10J 3/86, 2006, прототип).

Газотеплоэлектрогенераторный комплекс содержит газогенератор с автоматической загрузкой топлива, устройства всасывания атмосферного воздуха, регулирования температурного режима горения, очистки и охлаждения газа в водяном котле, системы отбора из него охлажденного в нем газа, последовательно соединенного с сепаратором-дымососом и охладителем-стабилизатором с газопоршневой электростанцией или паровой установкой.

Сепаратор-дымосос создает тягу, которая обеспечивает разрежение в слоях топлива последовательно расположенного в камерах и зонах газогенератора, всасывает атмосферный воздух в зону горения, регенерацию газа и отбор регенераторного газа после очистки его, охлаждение в водяном котле, подачу его в охладитель-стабилизатор, а из него в газопоршневой электрогенератор или паровой котел соответственно для выработки электроэнергии или пара.

Горячая вода вырабатывается после охлаждения газа в водяном котле холодной циркулирующей в нем жидкостью.

Недостатком известного газотеплоэлектрогенераторного комплекса является дополнительный расход вырабатываемого генераторного газа на регулирование температуры горения топлива в газогенераторе. Отсутствие системы накопления, подготовки газа и автоматического контроля его количества и качества перед подачей его во впускной трубопровод приводного двигателя электрогенератора.

Технической задачей изобретения является: повышение срока эксплуатации двигателя, повышение КПД установки, непрерывность выработки топливного газа, тепловой и электрической энергии.

Поставленная задача достигается тем, что газогенераторная установка для автономного энергообеспечения, содержащая автоматическое загрузочное устройство, газификатор с бункером и устройством всасывания атмосферного воздуха, камеру горения, устройство отбора и очистки газа, водяной котел и приводной газопоршневой двигатель электрогенератора, согласно изобретению, она снабжена установленным параллельно первому вторым газификатором с бункером, последовательно установленными в магистральную газовую линию воздушным охладителем, газокомпрессорной установкой, газгольдером, линиями высокого давления и линией низкого давления газа с редукторами, с датчиком аварийного давления газа и электромагнитным клапаном, соответственно, микропроцессорной системой электронного регулирования подачи генераторного газа в приводной двигатель электрогенератора с блоком автоматического контроля давления, расхода генераторного газа, частоты вращения коленчатого вала двигателя, температуры охлаждающей жидкости, бункер газификатора снабжен датчиком контроля уровня топлива.

Изобретение поясняется чертежом, на котором представлена схема газогенераторной установки.

Газогенераторная установка автономного энергообеспечения состоит из пяти технологических блоков:

I- газификатор обращенного процесса газификации.

II-блок автоматической подачи топлива и контроля его уровня в бункере газификатора.

III-блок охлаждения (выработки тепловой энергии).

IV- блок очистки, накопления газа и электронного регулирования его подачи в приводной двигатель электрогенератора и автоматического контроля режимов его работы.

V -блок выработки электрической энергии.

Блок I– газификатор обращенного процесса газификации состоит из бункера 1 и топливника 2 с огнеупорной обмуровкой, размещенного в нижней части газификатора. Внизу топливник 2 заканчивается опорным кольцом, на котором размещена колосниковая решетка 3, а под ней зольник 4. В верхней части топливника 2 имеются фурмы (воздухоподводящие отверстия) и автоматическое зажигающее устройство (на фиг. не показаны).

Блок II– автоматической подачи топлива и контроля его уровня в бункере газификатора состоит из направляющей воронки 5 и шнекового питателя 6, размещенных в дополнительном бункере 7 соединенном с бункером 1 и датчика уровня топлива, установленного на его стенке (на фиг. не показан).

Блок III– охлаждения генераторного газа содержит водяной котел 8 и воздушный охладитель газа 9 батарейно-трубчатой конструкции.

Блок IV– очистки, накопления генераторного газа и электронного регулирования его подачи в приводной двигатель электрогенератора и автоматического контроля режимов его работы состоит из последовательно установленных в магистральной газовой линии очистителя генераторного газа10, газокомпрессорной установки 11, газгольдера 12, линий высокого давления (ЛВД) и линии низкого давления (ЛНД) газа с редукторами 13, 14, установленными в соответствующих линиях, датчиком аварийного давления (на фиг. не показан) и электромагнитного клапана 15, дозатора 16, смесителя 17, всасывающего коллектора 18, приводного двигателя 19 и электрогенератора 20.

Блок V– выработки электрической энергии содержит всасывающий коллектор 18, приводной двигатель 19 и электрогенератор 20.

В качестве топлива для газогенераторной установки, обеспечивающей выработку генераторного газа с незначительным в нем содержанием смол, используются возобновляемые энергоносители в виде древесных топливных гранул цилиндрической формы диаметром 10-25 мм, влажностью 12-16%, объемной плотностью более 900 кг/м3 (насыпной плотностью 550-700 кг/м3), теплотворная способность которых больше по сравнению со щепой или кусковыми отходами древесины.

Для уменьшения удельной энергоемкости производства гранул в их состав вводят топливо-связующие вещества, увеличивающие их теплотворную способность и количество газа получаемого с единицы объема бункера газификатора. Этим повышается КПД газогенераторной установки I.

Гранулы - сыпучее топливо - равные по размеру, обеспечивают хорошее стабильное горение по всему объему топливника 2 за счет равномерного сопротивления инертным газам при их протягивании через регенерирующий слой топлива в бункере 1 газификатора I.

Газогенераторная установка работает следующим образом.

Топливо автоматически загружается в коническую воронку 5, а из нее поступает в шнековый питатель 6, который направляет его в бункер 1 газификатора I через загрузочное окно, расположенное в нижней части дополнительного бункера 7. Включается электровентилятор (на фиг. не показан), который втягивает атмосферный воздух через фурмы в зону горения топливника 2. Автоматическим зажигающим устройством (на фиг. не показано) производится поджег топлива, находящегося над колосниковой решеткой топливника 2, а продукты сгорания выбрасываются по трубе в атмосферу. Конец розжига топлива определяют по появлению почти бесцветного газа. После чего отключают вентилятор и включают газокомпрессорную установку 11.

Газокомпрессорная установка 11 создает тягу во всей системе газогенераторной установки и обеспечивает всасывание окружающего воздуха через фурмы, расположенные вверху топливника 2, протягивание инертных газов через регенерирующий слой топлива, регенерацию газа и его отбор из бункера 1 газификатора I.

Выработка тепловой энергии осуществляется следующим образом.

Полученный генераторный газ с температурой 400-800°С и выше поступает в водяной котел 8 или воздушный охладитель 9. В водяном котле 8 газ охлаждается циркулирующей в нем холодной жидкостью, которая нагревается до 90°С и поступает к потребителю.

Охлаждение газа в воздушном охладителе 9 батарейно-трубчатой конструкции происходит нагнетанием в него окружающего воздуха. Нагретый в нем окружающий воздух направляется к потребителю.

Горячая вода используется в основном в зимний период для отопления жилых и производственных помещений, теплиц.

Горячий воздух в летний период используется для сушки экологически чистым сушильным агентом сельскохозяйственной продукции растениеводства, животноводства или травяных и зерновых культур.

Генераторный газ, охлажденный до температуры, не превышающей температуру окружающего воздуха на 15-20°С поступает из охладителей 8 или 9 в очиститель 10, в котором происходит его фильтрация от золы и смол. Из очистителя 10 генераторный газ через фильтр поступает в газокомпрессорную установку 11 и закачивается в газгольдер 12.

Генераторный газ из газгольдера 12 через редуктор 13 поступает в линию высокого давления (ЛВД), на которой установлен датчик аварийного давления газа. При давлении газа выше допустимого, датчик срабатывает, при этом загорается лампочка на пульте блока автоматического контроля (БАК).

На первой ступени линии низкого давления (ЛНД) установлен датчик давления, подающий сигнал на пульт автоматического контроля.

Количество генераторного газа, подаваемого в приводной двигатель электрогенератора, регулируется газовым дозатором (ГД) 16, который управляется микропроцессорной системой электронного регулирования подачей газа (СЭРГ) с БАК.

Система СЭРГ регулирует количество генераторного газа, подаваемого в приводной двигатель электрогенератора и обеспечивает постоянство частоты вращения, что необходимо для его работы в оптимальном режиме.

На цифровом индикаторе БАК показываются значения следующих параметров: частоты вращения коленчатого вала двигателя (мин-1), расход газа (в процентах от номинального), температура охлаждающей жидкости двигателя (°С), давление газа во второй ступени редуктора (кг/см2).

Выработка электрической энергии осуществляется следующим образом.

При включении переключателя на газовый режим работы приводного двигателя электрогенератора, открывается электромагнитный газовый клапан 15 с встроенным газовым фильтром, через который генераторный газ поступает в редуктор 14 низкого давления (РНД), где происходит снижение давления в первой ступени до уровня 1,8-2,2 кг/см2.

Во второй ступени давление снижается до уровня близкого к атмосферному и газ поступает в автоматический газовый дозатор 16.

Количество генераторного газа, подаваемого в приводной двигатель электрогенератора, регулируется ГД 16, который управляется микропроцессорной системой электронного регулирования подачей газа СЭРГ. Из ГД 16 генераторный газ и воздух одновременно поступают через распылитель в смеситель 17 и смешиваются в нем, образуют газовоздушную смесь, которая поступает во впускной коллектор 18 приводного двигателя 19 электрогенератора 20.

Двигатель 19 соединен полумуфтой с электрогенератором 20. При работающем двигателе 19 и наборе стабильных оборотов, соответствующих рабочему режиму электрогенератора 20, вырабатывается электроэнергия, которая может использоваться для привода, например, электродвигателей, установленных на стационарных и передвижных технологических линиях оборудования для доработки корнеклубнеплодов или переработке сельскохозяйственной продукции растениеводства и животноводства.

Для непрерывной выработки генераторного газа в магистральную газовую линию можно установить два бункера 1 газификатора I, соединенных параллельно между собой.

Загружают в них топливо автоматически в соответствии с технологическими операциями блока II автоматической подачи топлива и контроля его уровня в бункерах 1 газификаторов I.

В первом бункере 1 газификатора I проводят последовательно все технологические операции по производству в нем регенераторного газа, его отбору и накоплению газокомпрессорной установкой 11 в газгольдере 12, а из него газ поступает в установки, расположенные в технологических блоках II-V.

При падении давления газа в газгольдере 12 ниже допустимого клапаном перекрывается поступление в него газа со стороны первого бункера 1 и включается в работу второй бункер 1 газификатора I, в котором уже идет процесс выработки газа и процесс продолжается.

Первый заполняется топливом и ожидает следующего включения.

Далее выработка генераторного газа поочередно в первом и втором бункерах 1 газификаторов I повторяется.

Экономический эффект внедрения газогенераторной установки при сжигании в ней гранулированного топлива из древесного сырья высокой плотности и теплотворной способности позволит получить качественный генераторный газ с большим содержанием горючего вещества, позволяющий увеличить срок эксплуатации и мощность приводного двигателя электрогенератора и КПД газогенераторной установки, получать электрическую и тепловую энергию для использования их в сельскохозяйственном производстве, а, следовательно, и более дешевую продукцию животноводства и растениеводства.

Похожие патенты RU2709244C1

название год авторы номер документа
КОМПЛЕКС ГАЗОТЕПЛОЭЛЕКТРОГЕНЕРАТОРНЫЙ 2006
  • Литвиненко Леонид Михайлович
  • Силантьева Лариса Яковлевна
RU2303192C1
СПОСОБ ГАЗИФИКАЦИИ ТОПЛИВА ДЛЯ ПИТАНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Колесников Михаил Петрович
  • Колесникова Людмила Николаевна
  • Лещев Андрей Юрьевич
  • Филькин Николай Михайлович
  • Шаклеин Андрей Германович
RU2578503C2
ГАЗОГЕНЕРАТОРНАЯ УТИЛИЗАЦИОННАЯ УСТАНОВКА И ТОПЛИВНЫЕ ГРАНУЛЫ ДЛЯ НЕЕ 2014
  • Кабанов Евгений Владимирович
  • Тур Виктор Васильевич
  • Гольденберг Евгений Соломонович
  • Трусов Геннадий Юрьевич
RU2582986C1
Способ энергетической утилизации твердых углеродсодержащих отходов и устройство - малая мобильная твердотопливная электроводородная станция - для его осуществления 2022
  • Тихомиров Игорь Владимирович
  • Тихомирова Татьяна Семеновна
RU2793101C1
Способ получения электроэнергии из некондиционной (влажной) топливной биомассы и устройство для его осуществления 2016
  • Варочко Алексей Григорьевич
  • Забегаев Александр Иванович
  • Тихомиров Игорь Владимирович
RU2631456C1
Установка комбинированного производства тепловой и электрической энергии на базе двигателя внутреннего сгорания с использованием древесной щепы в качестве исходного топлива 2022
  • Имамутдинов Айнур Венерович
  • Гильмутдинов Марат Ренатович
  • Шакиров Эдуард Феликсович
RU2778898C1
Энергетический комплекс на основе газификации отходов биомассы 2017
  • Артамонов Алексей Владимирович
  • Кожевников Юрий Александрович
  • Костякова Юлия Юрьевна
RU2679330C1
Способ автономной электрогенерации и устройство - малая твердотопливная электростанция для его осуществления 2020
  • Тихомиров Игорь Владимирович
  • Тихомирова Татьяна Семеновна
RU2737833C1
Способ переработки твердого топлива с использованием солнечной энергии 2023
  • Мингалеева Гузель Рашидовна
  • Набиуллина Мадина Фаридовна
  • Клейн Евгений Васильевич
RU2812312C1
ПОЛИГЕНЕРИРУЮЩИЙ ЭНЕРГОТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС 2015
  • Шевырев Сергей Александрович
  • Богомолов Александр Романович
RU2591075C1

Иллюстрации к изобретению RU 2 709 244 C1

Реферат патента 2019 года Газогенераторная установка для автономного энергообеспечения

Изобретение относится к стационарным газогенераторным установкам для автономного энергообеспечения. Газогенераторная установка содержит автоматическое загрузочное устройство, газификатор с бункером и устройством всасывания атмосферного воздуха, камеру горения, водяной котел и приводной газопоршневой двигатель электрогенератора. В магистральную газовую линию установлен параллельно первому второй газификатор с бункером, а также последовательно установлены очиститель генераторного газа, газокомпрессорная установка, газгольдер, редуктор, линия высокого давления, на которой установлен датчик аварийного давления газа, линия низкого давления газа с редуктором низкого давления. Генераторный газ поступает в редуктор низкого давления через электромагнитный клапан. Установка регулируется микропроцессорной системой электронного регулирования подачи генераторного газа в приводной двигатель электрогенератора с блоком автоматического контроля давления, расхода генераторного газа, частоты вращения коленчатого вала двигателя, температуры охлаждающей жидкости. Бункер газификатора снабжен датчиком контроля уровня топлива. Применение заявленной газогенераторной установки увеличивает ее КПД, обеспечивает непрерывность выработки топливного газа. 1 ил.

Формула изобретения RU 2 709 244 C1

Газогенераторная установка для автономного энергообеспечения, содержащая автоматическое загрузочное устройство, газификатор с бункером и устройством всасывания атмосферного воздуха, камеру горения, водяной котел и приводной газопоршневой двигатель электрогенератора, отличающаяся тем, что она снабжена установленным в магистральную газовую линию параллельно первому вторым газификатором с бункером, воздушным охладителем генераторного газа и последовательно установленными в магистральную газовую линию очистителем генераторного газа, газокомпрессорной установкой, газгольдером, редуктором, линией высокого давления, на которой установлен датчик аварийного давления газа, линией низкого давления газа с редуктором низкого давления, а также электромагнитным клапаном, через который генераторный газ поступает в редуктор низкого давления, и микропроцессорной системой электронного регулирования подачи генераторного газа в приводной двигатель электрогенератора с блоком автоматического контроля давления, расхода генераторного газа, частоты вращения коленчатого вала двигателя, температуры охлаждающей жидкости, бункер газификатора снабжен датчиком контроля уровня топлива.

Документы, цитированные в отчете о поиске Патент 2019 года RU2709244C1

КОМПЛЕКС ГАЗОТЕПЛОЭЛЕКТРОГЕНЕРАТОРНЫЙ 2006
  • Литвиненко Леонид Михайлович
  • Силантьева Лариса Яковлевна
RU2303192C1
ПОКРЫТИЕ ДЛЯ МЕТАЛЛИЧЕСКИХ И ЖЕЛЕЗОБЕТОННЫХНАСТИЛОВ 0
  • Д. И. Ардов, И. Я. Каменецкий, А. Ф. Смирнова, А. А. Сергеева,
  • В. М. Пономарева, А. В. Голубева, Н. П. Лукь Нов, Е. Н. Еремина, К. А. Сивогракова, И. П. Кинтер В. П. Шалина
SU175643A1
Способ местного отжига листового металла 1934
  • Безменов Я.А.
SU45013A1
ТЕПЛОГАЗОГЕНЕРАТОР ТВЕРДОГО ТОПЛИВА 2002
  • Шломин В.В.
  • Коркин В.А.
  • Еремеев Н.С.
RU2255960C2
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1
US 4546603 A1, 15.10.1985.

RU 2 709 244 C1

Авторы

Гусаров Валентин Александрович

Карташов Станислав Григорьевич

Зернов Виталий Николаевич

Еремин Петр Александрович

Еремченко Анна Валерьевна

Еремченко Валерий Иванович

Зернов Константин Витальевич

Даты

2019-12-17Публикация

2019-03-21Подача