Способ картографирования с помощью синтеза апертуры Российский патент 2019 года по МПК G01S13/90 

Описание патента на изобретение RU2710021C1

Предлагаемое изобретение относится к области локации и может быть использовано для томографии на акустических волнах при монохроматическом зондировании окружающего пространства.

Известный способ картографирования земной поверхности, являющийся аналогом, применяемый в радиолокационных станциях (РЛС) бокового обзора, предусматривает излучение когерентного импульсного зондирующего сигнала, стробирование отраженного сигнала по времени, то есть распределение сигнала по каналам дальности, сжатие обрабатываемого сигнала (синтезирование апертуры) в каждом канале дальности, модуляция луча по яркости и развертку изображения в координатах удаления от проекции траектории на землю и расстояния по траектории.

Этот способ описан в книге А.П. Реутова, Б.А. Михайлова, Г.С. Кондратенкова, Б.В. Бойко. Радиолокационные станции бокового обзора. М.: Сов. радио, 1970, с. 98-107, а цифровое устройство, реализующее известный метод картографирования, подробно описано в книге В.Н. Антипова, В.Г. Горяйнова и др. Радиолокационные станции с цифровым синтезированием апертуры антенны. М.: Радио и связь, 1988, с. 61, рис. 28. Это устройство можно считать аналогом предлагаемого способа картографирования.

Известный способ, работает следующим образом. Принятый приемником импульсный сигнал распределяется по каналам дальности с помощью стробирующих каскадов. Затем в каждом канале с помощью аналого-цифровых преобразователей (АЦП) сигналы преобразуются в цифровые отсчеты, и выборка из N-отсчетов вводится в память. В каждом канале дальности блок быстрого преобразования Фурье (БПФ) преобразует отсчеты сигнала в отсчеты спектра.

В перемножителе происходит перемножение одноименных отсчетов входного спектра и коэффициентов опорной функции. Результат перемножения одноименных отсчетов подвергается обратному быстрому преобразованию Фурье (ОБПФ) и полученные комплексные отсчеты сигнала свертки берутся по модулю. Затем отсчеты поступают в цифровую систему индикации (ЦСИ).

Известен способ картографирования объектов для получения их внутренней структуры для целей томографии (патент №2066060 от 16 февраля 1993 года, взятый в качестве прототипа). В этом способе используется движущийся доплеровский локатор с монохроматическим зондирующим сигналом. Излучающая и принимающая антенны расположены рядом, практически в одной точке пространства. При таком расположении антенн локация называется однопозиционной. Отраженный от объекта сигнал с доплеровским сдвигом частоты смешивается на нелинейном элементе с монохроматическим зондирующим сигналом и после низкочастотной фильтрации выделяется траекторный доплеровский сигнал. Обработка отраженного от объекта траекторного доплеровского сигнала производится корреляционным методом с помощью заранее рассчитанных опорных траекторных сигналов для точечных отражателей, расположенных на разных дальностях с некоторым шагом. Таким образом организуются каналы дальности. В результате корреляционной обработки синтезируется апертура антенны и перестраивается фокусное расстояние. С помощью перестраиваемого фокуса принятый сигнал распределяется по каналам дальности. В каналах дальности производится перекодировка амплитуды корреляционной функции в пиксели, отличающиеся по яркости. Эти пиксели разворачиваются в координатах фокусного расстояния и дальности вдоль траектории. В результате получается картина сечения объекта.

Если сигнал распространяется в материале объекта, то можно получить внутреннюю структуру объекта.

Для целей томографии наиболее подходит ультразвуковое колебание, хорошо проникающее в тело человека. Преимущество монохроматического зондирующего сигнала состоит в том, что он избавляет от дисперсионных искажений, которые обязательно присутствуют при применении широкополосных импульсных зондирующих сигналов. Суть дисперсионных искажений в том, что составляющие спектра широкополосного импульсного сигнала распространяются в теле человека с неодинаковой скоростью, что приводит к размыванию короткого импульса и в конечном результате к искажению изображения. Перечислим признаки, заимствованные у прототипа: 1. Излучение монохроматического зондирующего сигнала; 2. Прием отраженного сигнала; 3. Формирование путем расчета опорных траекторных сигналов для каждой дальности; 4. Распределении траекторного сигнала по К дальностям за счет корреляции принятого траекторного сигнала с опорными траекторными сигналами; 5. Формирование матрицы из набора корреляционных функций для разных дальностей; 6. Преобразование матрицы в яркостные сигналы для получения изображения сечения томографируемого объекта.

Недостатком известного метода является то, что для синтеза апертуры нужен траекторный доплеровский сигнал, который образуется в результате перемещение локатора. Кроме того движущийся локатор должен контактировать с пациентом, чтобы осуществить его проникающее зондирование. Такая возможность появляется, если пациента поместить в водную среду. Локатор при движении провоцирует поверхностные волны, от которых отражаются ультразвуковые зондирующие колебания. Эти помехи приводят к искажениям на реконструированном изображении.

Второй существенный недостаток состоит в том, что пациента надо помещать в водную среду. Это очень не комфортная ситуация для пациента.

Эти недостатки устраняются, если исключить перемещение локатора. Траекторный доплеровский сигнал можно получить без перемещения локатора с помощью коммутируемой антенной решетки, развернутой в пространстве.

Задачей (техническим результатом) предлагаемого изобретения является:

1. Повышение качества изображения, из-за устранения поверхностных волн, оставляемых движущимся локатором; 2. исключение помещение пациента в водную среду;

Поставленная задача достигается тем, что в известном способе, который состоит в том, что излучается монохроматический зондирующий сигнал, осуществляется прием отраженного сигнала, выделяется траекторный доплеровский сигнал, производится формирование путем расчета опорных траекторных сигналов от точечных отражателей для каждой дальности, делается распределение принятого сигнала по К дальностям за счет корреляции принятого траекторного сигнала с опорными сигналами, производится формирование матрицы из набора корреляционных функций для разных дальностей, делается преобразование матрицы в яркостные сигналы для получения изображения сечения томографируемого объекта. Отличие предлагаемого способа в том, что с целью, устранения искажений изображения из-за образования поверхностных волн при движении локатора, устранения помещения пациента в водную среду, которое создает неудобства для пациента при сборе данных для томографирования, отсчеты отраженного траекторного сигнала для синтеза апертуры регистрируют в интерференционном пространстве с помощью коммутируемой антенной решетки, путем последовательного переключения элементов антенной решетки, распределенных в пространстве вдоль заданной апертуры.

Влияние поверхностной волны на результаты реконструкции рассмотрено в статье [Ющенко, В.П. Круговой апертурный синтез для целей томографии / В.П. Ющенко // Автометрия. - 2002. - Т. 38, №6. - С. 28-33.]. Взятые из этой работы результаты представлены на фиг. 1 На фиг. 1, а, представлен результат реконструкции точечного объекта без влияния отражений от поверхностной волны. На фиг. 1, б и в, представлен результат влияния отражений от поверхностной волны: б) при соизмеримом отношении сигнал помеха; в) при значительном преобладании отражений от поверхностной волны над сигналом от точечного объекта.

Идея предлагаемого способа поясняется на примере одного из устройств, показанного на фиг. 2.

На фиг. 2 представлен пример устройства, которое позволяет зарегистрировать траекторный доплеровский сигнал, не прибегая к перемещению локатора. Основным элементом устройства является коммутируемая антенная решетка 7, которая располагается в интерференционном пространстве, где интерферируют зондирующая и отраженная от объекта волна. Прямолинейная антенная решетка с последовательно переключаемыми элементами с помощью контактов 1 и 2 коммутатора 3 эквивалентна синтезу апертуры при движении локатора по прямолинейной траектории. В каждый отдельный момент времени используются два соседних элемента антенной решетки. Один работает на излучение монохроматической волны от генератора 4, а второй на прием отраженного сигнала. Элементы антенной решетки имеют слабонаправленную диаграмму и очень малые размеры. Такие антенные элементы легко реализуются в ультразвуковом диапазоне. Скользящая пара контактов 1 и 2 в коммутаторе перемещается с постоянной заданной скоростью , посылая на соответствующие элементы антенной решетки зондирующий монохроматический сигнал, и подводит принятый сигнал соседним элементом к фазовому детектору 5. На фазовом детекторе опорный (зондирующий сигнал) перемножается с принятым сигналом в результате получаем отсчет доплеровского сигнал, для данного положения контактов коммутатора. Чтобы получить второй отсчет доплеровского сигнала, нужно передвинуть контактную пару 1 и 2 на соседние контакты. После того, как контактная пара достигнет в результате перемещения крайнего правого контакта, регистрацию отсчетов доплеровского сигнала можно считать законченной. Аналоговые отсчеты доплеровского сигнала в реальном масштабе времени с помощью АЦП преобразуются в цифровые отсчеты и подаются на компьютер для корреляционной обработки с опорными сигналами. Полученный набор корреляционных функций преобразуется в двумерную матрицу цифровых значений амплитуд корреляционных функций. Далее амплитуды двумерной корреляционной матрицы преобразуют в яркостные или цветовые сигналы (пиксели). В результате чего двумерная матрица превращается в картину томографического сечения.

Техническим результатом отличительных действий является положительный эффект, которым не обладает прототип. Положительный эффект состоит в том, что отсутствие движения локатора не провоцирует поверхностную волну, которая мешает реконструкции изображения и не требуется помещать пациента в водную среду, что повышает комфортность томографирования.

Похожие патенты RU2710021C1

название год авторы номер документа
Способ картографирования с помощью кольцевой антенной решётки 2019
  • Ющенко Василий Павлович
  • Гофман Ольга Валерьевна
  • Дулуба Татьяна Валерьевна
RU2728512C1
Устройство томографирования с помощью кольцевой антенной решётки 2021
  • Ющенко Валерий Павлович
  • Легкий Владимир Николаевич
  • Шебалкова Любовь Васильевна
RU2765605C1
Способ активной обзорной моноимпульсной радиолокации с инверсным синтезированием апертуры антенны 2018
  • Джиоев Альберт Леонидович
  • Косогор Алексей Александрович
  • Омельчук Иван Степанович
  • Приймаков Сергей Николаевич
  • Фоминченко Геннадий Леонтьевич
RU2682661C1
СПОСОБ ИМИТАЦИИ РАДИОСИГНАЛА, ОТРАЖЕННОГО ОТ ПРОСТРАНСТВЕННО РАСПРЕДЕЛЕННОЙ ДИНАМИЧЕСКОЙ РАДИОФИЗИЧЕСКОЙ СЦЕНЫ, В РЕАЛЬНОМ ВРЕМЕНИ 2008
  • Герасимов Александр Борисович
  • Киселева Юлия Владимировна
  • Кренев Александр Николаевич
RU2386143C2
СПОСОБ ЭКСПЕРИМЕНТАЛЬНОЙ ПРОВЕРКИ ИНФОРМАЦИОННЫХ И ИДЕНТИФИКАЦИОННЫХ ВОЗМОЖНОСТЕЙ ДОПЛЕРОВСКИХ ПОРТРЕТОВ ВОЗДУШНЫХ ОБЪЕКТОВ 2014
  • Митрофанов Дмитрий Геннадьевич
  • Романенко Алексей Владимирович
  • Бортовик Виталий Валерьевич
  • Силаев Николай Владимирович
  • Майоров Дмитрий Александрович
  • Бобин Михаил Сергеевич
RU2571957C1
СПОСОБ ФОРМИРОВАНИЯ РАДИОЛОКАЦИОННЫХ ИЗОБРАЖЕНИЙ В РЛС С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ 2022
  • Буслаев Алексей Борисович
  • Мариам Мохаммад Хасан
  • Муравьев Никита Павлович
  • Непомнящий Максим Михайлович
  • Рязанцев Леонид Борисович
RU2801361C1
УСТРОЙСТВО РАДИОЛОКАЦИОННОЙ СТАНЦИИ С НЕПРЕРЫВНЫМ ЛИНЕЙНО-ЧАСТОТНО-МОДУЛИРОВАННЫМ СИГНАЛОМ И СИНТЕЗОМ АПЕРТУРЫ 2017
  • Кочнев Павел Эдуардович
  • Антонов Сергей Леонидович
  • Колтышев Евгений Евгеньевич
  • Янковский Владимир Тадэушевич
  • Фролов Алексей Юрьевич
  • Антипов Владимир Никитич
  • Валов Сергей Вениаминович
  • Мухин Владимир Витальевич
RU2660450C1
СПОСОБ ФОРМИРОВАНИЯ РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ОБЪЕКТОВ 2007
  • Лихачев Владимир Павлович
  • Усов Николай Александрович
RU2347239C1
РАДИОЛОКАЦИОННАЯ СТАНЦИЯ С СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ И КВАЗИНЕПРЕРЫВНЫМ ИЗЛУЧЕНИЕМ 2012
  • Канащенков Анатолий Иванович
  • Матюшин Анатолий Сергеевич
  • Антипов Владимир Никитович
RU2510685C2
ВЕРТОЛЕТНАЯ РАДИОЛОКАЦИОННАЯ СИСТЕМА 1997
  • Артемьев А.И.
  • Гуськов Ю.Н.
RU2147136C1

Иллюстрации к изобретению RU 2 710 021 C1

Реферат патента 2019 года Способ картографирования с помощью синтеза апертуры

Изобретение предназначено для использования в локации для получения картины сечения внутренних органов человека и картографирования непрозрачных в оптическом диапазоне сред или объемов вещества для выявления их внутренней структуры. Достигаемый технический результат – повышение качества изображения, исключение помещения пациента в водную среду. Сущность изобретения заключается в том, что исключаются движения локатора при регистрации траекторного доплеровского сигнала. Отсчеты отраженного траекторного доплеровского сигнала для синтеза апертуры регистрируют в интерференционном пространстве с помощью коммутируемой антенной решетки, путем последовательного переключения элементов антенной решетки, распределенных в интерференционном пространстве вдоль заданной апертуры. Эта отличительная операция по сравнению с прототипом позволяет повысить качество реконструкции изображения из-за отсутствия движения локатора, что позволяет избавиться от поверхностной волны, которая приводит к искажению изображения и даже иногда препятствует реконструкции изображения по доплеровскому сигналу. Кроме того, отсутствие перемещения локатора позволяет исключить погружение пациента в водную среду и повысить комфортность томографирования. 2 ил.

Формула изобретения RU 2 710 021 C1

Способ картографирования с помощью синтезированной апертуры, заключающийся в излучении монохроматического зондирующего сигнала, приеме отраженного сигнала, выделении траекторного доплеровского сигнала, формировании путем расчета отсчетов опорных траекторных доплеровских сигналов для каждой дальности, распределении траекторного сигнала по К дальностям за счет корреляции принятого траекторного сигнала с опорными траекторными сигналами, формировании матрицы из набора корреляционных функций для разных дальностей, преобразовании матрицы в яркостные сигналы для получения изображения сечения томографируемого объекта, отличающийся тем, что отсчеты отраженного траекторного доплеровского сигнала для синтеза апертуры регистрируют в интерференционном пространстве с помощью коммутируемой антенной решетки, путем последовательного переключения элементов антенной решетки, распределенных в интерференционном пространстве вдоль заданной апертуры.

Документы, цитированные в отчете о поиске Патент 2019 года RU2710021C1

RU 2066060 C1, 27.08.1996
Способ контроля процесса ферментации чая 1960
  • Микеладзе Г.Г.
  • Цагарели К.К.
SU137721A1
СПОСОБ ДИСТАНЦИОННОГО ДОСМОТРА ЦЕЛИ В КОНТРОЛИРУЕМОЙ ОБЛАСТИ ПРОСТРАНСТВА 2009
  • Кузнецов Андрей Викторович
  • Горшков Игорь Юрьевич
  • Воробьев Станислав Игоревич
  • Карпов Константин Сергеевич
  • Аверьянов Валерий Петрович
RU2411504C1
СПОСОБ СТАБИЛИЗАЦИИ ВРЕМЕННОГО ПОЛОЖЕНИЯ СВЕРХШИРОКОПОЛОСНОГО СИГНАЛА И ЛОКАТОР ДЛЯ МОНИТОРИНГА ЖИВЫХ ОБЪЕКТОВ, РЕАЛИЗУЮЩИЙ ЭТОТ СПОСОБ 2004
  • Андриянов А.В.
  • Икрамов Г.С.
  • Курамшев С.В.
RU2258942C1
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО БЕСКОНТАКТНОГО МОНИТОРИНГА ПАРАМЕТРОВ ЖИЗНЕДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА 2010
  • Зиганшин Эдуард Гусманович
RU2462990C2
WO 2008109946 A1, 18.09.2008
US 6587072 B1, 01.07.2003
JP 10262936 A, 06.10.1998.

RU 2 710 021 C1

Авторы

Ющенко Валерий Павлович

Легкий Владимир Николаевич

Шебалкова Любовь Васильевна

Даты

2019-12-24Публикация

2019-05-29Подача