Способ картографирования с помощью кольцевой антенной решётки Российский патент 2020 года по МПК A61B8/13 G01S13/89 H01Q3/34 

Описание патента на изобретение RU2728512C1

Предлагаемое изобретение относится к области ближней локации и может быть использовано для томографии на акустических волнах при монохроматическом зондировании окружающего пространства.

Известный способ картографирования земной поверхности, являющийся аналогом, применяемый в радиолокационных станциях (РЛС) бокового обзора, предусматривает излучение когерентного импульсного зондирующего сигнала, стробирование отраженного сигнала по времени, то есть распределение сигнала по каналам дальности за счет стробирования, сжатие обрабатываемого сигнала за счет синтеза апертуры в каждом канале дальности, модуляция оптического луча по яркости амплитудой принятого сигнала и развертку изображения на фотопленке в координатах удаления от проекции траектории на землю и расстояния по траектории.

Этот способ описан в книге А.П. Реутова, Б.А. Михайлова, Г.С. Кондратенкова, Б.В. Бойко. Радиолокационные станции бокового обзора. М.: Сов. радио, 1970, с. 98-107, а цифровое устройство, реализующее известный метод картографирования, подробно описано в книге В.Н. Антипова, В.Г. Горяйнова и др. Радиолокационные станции с цифровым синтезированием апертуры антенны. М.: Радио и связь, 1988, с. 61, рис. 28. Это устройство позволяет получить сверх узкий луч за счет синтеза апертуры и за счет узкого луча детально рассмотреть на поверхности земли малоразмерные объекты. Это устройство можно считать аналогом предлагаемого способа картографирования.

Известный способ работает следующим образом. Принятый приемником импульсный сигнал распределяется по каналам дальности с помощью стробирующих каскадов. Затем в каждом канале с помощью аналого-цифровых преобразователей (АЦП) сигналы преобразуются в цифровые отсчеты, и выборка из N-отсчетов вводится в память. В каждом канале дальности блок быстрого преобразования Фурье (БПФ) преобразует отсчеты сигнала в отсчеты спектра.

Далее осуществляют перемножение одноименных отсчетов входного спектра и коэффициентов опорной функции. Результат перемножения одноименных отсчетов подвергается обратному быстрому преобразованию Фурье (ОБПФ) и полученные комплексные отсчеты сигнала свертки берутся по модулю. Затем отсчеты поступают в цифровую систему индикации (ЦСИ), с помощью которой реконструируется изображение.

Известен способ картографирования объектов для получения их внутренней структуры для целей томографии (патент №2066060 от 16 февраля 1993 года, взятый в качестве прототипа). В этом способе используется движущийся доплеровский локатор с монохроматическим зондирующим сигналом. Излучающая и принимающая антенны расположены рядом, практически в одной точке пространства. При таком расположении антенн локация называется однопозиционной. Отраженный от объекта сигнал с доплеровским сдвигом частоты смешивается на нелинейном элементе с монохроматическим зондирующим сигналом и после низкочастотной фильтрации выделяется траекторный доплеровский сигнал. Обработка отраженного от объекта траекторного доплеровского сигнала производится корреляционным методом с помощью заранее рассчитанных опорных траекторных сигналов для точечных отражателей, расположенных на разных дальностях с некоторым шагом. Таким образом организуются каналы дальности. В результате корреляционной обработки синтезируется апертура антенны с перестраиваемым фокусным расстоянием. С помощью перестраиваемого фокуса принятый сигнал распределяется по каналам дальности. В каналах дальности производится перекодировка амплитуды корреляционной функции в пиксели, отличающиеся по яркости. Эти пиксели разворачиваются в координатах фокусного расстояния и дальности вдоль траектории. В результате получается картина сечения объекта.

Если сигнал распространяется в материале объекта, то можно получить внутреннюю структуру объекта.

Для целей томографии наиболее подходит ультразвуковое колебание, хорошо проникающее в тело человека. Преимущество монохроматического зондирующего сигнала состоит в том, что он избавляет от дисперсионных искажений, которые обязательно присутствуют при применении широкополосных импульсных зондирующих сигналов. Суть дисперсионных искажений в том, что составляющие спектра широкополосного импульсного сигнала распространяются в теле человека с неодинаковой скоростью, что приводит к размыванию короткого импульса и в конечном результате к искажению изображения. Перечислим признаки, заимствованные у прототипа: 1. Излучение монохроматического зондирующего сигнала; 2. Прием отраженного сигнала; 3. Формирование путем расчета опорных сигналов для каждой дальности; 4. Распределении траекторного сигнала по К дальностям за счет корреляции принятого траекторного сигнала с опорными траекторными сигналами; 5. Формирование матрицы из набора корреляционных функций для разных дальностей; 6. Преобразование матрицы в яркостные сигналы для получения изображения сечения томографируемого объекта.

Недостатком известного метода является то, что для синтеза апертуры нужен траекторный доплеровский сигнал, который образуется в результате движения локатора. Кроме того движущийся локатор должен контактировать с пациентом, чтобы осуществить его проникающее зондирование. Такая возможность появляется, если пациента поместить в водную среду. Локатор при движении в водной среде провоцирует поверхностные волны, от которых отражаются ультразвуковые зондирующие колебания. Эти помехи приводят к искажениям на реконструированном изображении.

Второй существенный недостаток состоит в том, что пациента надо помещать в водную среду. Это очень не комфортная ситуация для пациента.

Эти недостатки устраняются, если исключить перемещение локатора и отказаться от синтеза апертуры. Известно, что с помощью синтеза апертуры антенны можно не только сделать бесконечно тонкий антенный луч, но и осуществить фокусировку энергии излучателя на заданную дальность, подобно тому, как это делается с помощью линзы. Кроме того синтезированная апертура позволяет управлять положением фокуса в пространстве. Это делается с помощью опорных траекторных сигналов, рассчитанных математически для точечных объектов. Таким образом, управляя фокусом можно просканировать окружающее пространство около траектории синтеза апертуры. Помещая фокус во внутрь томографируемого объекта можно просканировать внутренности, построить картину внутренней структуры объекта.

Задачей (техническим результатом) предлагаемого изобретения является:

1. Исключение перемещения элементов регистрации, то есть исключение движущего локатора, что позволяет заменить водную среду гелем.

2. Исключение помещение пациента в водную среду.

3. Упрощение системы регистрации данных при томографировании из-за отсутствия движущихся элементов аппарата регистрации.

4. Повышение качества изображения, из-за устранения поверхностных волн, оставляемых движущимся локатором в водной среде.

Поставленная задача достигается тем, что в известном способе, который состоит в том, что излучается монохроматический зондирующий сигнал, осуществляется прием отраженного сигнала, управление фокусом с помощью синтезированной апертуры, формирование матрицы изображения путем распределения принятого фокусом сигнала по элементам дальности, преобразование матрицы в яркостные сигналы для получения изображения сечения томографируемого объекта. Отличие предлагаемого способа в том, что с целью, устранения искажений изображения из-за образования поверхностных волн при движении локатора, устранения помещения пациента в водную среду, которое создает неудобства для пациента при сборе данных для томографирования, управление пространственным положением фокуса осуществляют с помощью кольцевой антенной решетки путем задания рассчитанных начальных фаз на каждом излучающем элементе кольцевой антенной решетки.

В предлагаемом способе также предполагается использование монохроматического зондирующего сигнала и управление фокусом для сканирования окружающего пространства, но делается это сканирование не с помощью синтеза апертуры, а с помощью реальной кольцевой антенной решетки. Энергия четных элементарных излучателей кольцевой антенной решетки концентрируется внутри кольцевой антенны фиг. 1. Если фазы излучаемых волн каждым элементом антенной решетки одинаковы, то фокус концентрации энергии будет в центре окружности. В центре окружности фиг. 1 пришедшие волны от отдельных антенных элементов решетки сложатся в фазе (1) в центральном фокусе и дадут всплеск амплитуды фиг. 2. Математически это можно пояснить следующим образом.

Где ϕi1234=…, Фазы волн (сигналов) на выходе отдельных элементов кольцевой антенной решетки.

si=s1=s2=s3=… Амплитуды волн (сигналов) на выходе отдельных элементов кольцевой антенной решетки.

Предположим, что в фокусе расположена отражающая точка. Тогда сконцентрированная в фокусе волна отразится и в виде сферической волны одновременно достигнет всех нечетных элементов антенной решетки. После суммирования всех сигналов, принятых нечетными элементами мы получим всплеск амплитуды отраженного сигнала, пришедшего из фокуса.

На Фиг. 1 обозначено ϕi1234=…, фазовращатели, Uу - напряжение, управляющее фазой фазовращателя.

Кольцевая антенная решетка содержит четное количество элементов. Четные элементы антенной решетки с фазовращателями излучают волны, а нечетные - принимают отраженные сигналы от томографируемых объектов, располагаемых внутри кольцевой антенной решетки.

Если фазы излучаемых волн каждым элементом разные и рассчитаны и установлены в соответствии с выражением (2), то фокус концентрации энергии будет смещен от центра окружности фиг. 1 и фиг. 3. В этом случае фазы волн от отдельных антенных излучателей сфазируются не в центре окружности, а в другом месте фиг. 3 и дадут всплеск амплитуды в смещенном фокусе фиг. 3. Распределение фаз в каждом i-ом элементе антенной решетки для смещенного от центра фокуса рассчитываются по формуле (2)

где Ri - расстояние от k-го элемента матрицы изображения до i-го элемента кольцевой антенной решетки, si - амплитуда волны на выходе i-го элемента кольцевой антенной решетки, R0 - радиус кольцевой антенной решетки, δk - расстояние от центра кольцевой антенной решетки до k-го элемента матрицы изображения, λ - длина ультразвуковой волны, θi - меняющийся угол между δk и Ri при смене i-го элемента кольцевой антенной решетки.

Поясняющая геометрия для вывода формулы (2) представлена на фиг 4.

Для рассчета на какой угол нужно повернуть фазу сигнала в i-ом фазовращателе (ϕi, чтобы фокусом попасть в нужный элемент матрицы изображения, следует отбросить целое число волн (периодов волны), определяемых по формуле

где n1 - целое число волн λ, укладывающихся на отрезке Ri, Цифра 4 означает, что волна проходит удвоенное расстояние Ri, то есть от фокуса до элемента кольцевой антенной решетки и обратно.

Остается показать на модели двухточечного объекта, не будут ли мешать реконструкции другие отражающие точки, находящиеся в области реконструкции, то есть внутри кольца антенной решетки. При моделировании реконструкции двухточечного объекта следует иметь в виду, что поскольку отражать зондирующий сигнал могут только точки, попавшие в фокус, то соседние точки, находящиеся вне фокуса, не будут существенно влиять на реконструкцию изображение точки, попавшей в фокус. Если имеет место концентрированная фокусировка, охватывающая один элемент матрицы изображения (фиг. 4), то результат реконструкции изображения двухточечного объекта будет выглядеть идеально фиг. 5. На фиг. 5,а представлен результат реконструкции в виде двух амплитуд сигналов на выходе сумматора, то есть в виде двух дельта импульсов, а на виде сверху видны еле заметные две точки. Вид сверху на эти дельта функции фиг.5 б является реконструированным изображением двухточечного объекта.

Таким образом, результаты моделирования подтверждают возможность реконструкции, то есть томографирования с помощью кольцевой антенной решетки.

Влияние поверхностной волны на результаты реконструкции рассмотрено в статье [Ющенко, В.П. Круговой апертурный синтез для целей томографии / В.П. Ющенко // Автометрия. - 2002. - Т. 38, №6. - С. 28-33.]. Взятые из этой работы результаты представлены на фиг. 6 На фиг. 6, а, представлен результат реконструкции точечного объекта без влияния отражений от поверхностной волны. На фиг. 6, б и в, представлен результат влияния отражений от поверхностной волны: б) при соизмеримом отношении сигнал помеха; в) при значительном преобладании отражений от поверхностной волны над сигналом от точечного объекта.

Идея предлагаемого способа поясняется на примере одного из устройств, показанного на фиг. 1.

На фиг. 1 представлен пример устройства, которое позволяет управлять пространственным положением фокуса с помощью кольцевой антенной решетки. Основным элементом устройства является кольцевая антенная решетка 1. Четные излучающие элементы антенной решетки питаются через фазовращатели ϕ1…ϕ8 от источника монохроматической волны 3. Нечетные элементы антенной решетки принимают отраженный сигнал из области фокусировки. Принятые сигналы нечетными элементами суммируются в сумматоре 2. Элементы антенной решетки имеют слабонаправленную диаграмму и очень малые размеры. Такие антенные элементы легко реализуются в ультразвуковом диапазоне. Управляемый фокус последовательно занимает ряд пространственных положений, которые соответствуют положениям элементов матрицы изображения фиг. 4. В эти моменты времени в памяти компьютера в цифровом виде фиксируются амплитуды принятых сигналов с выходы сумматора 2. Таким образом получается набор из цифровых отсчетов принятых просуммированных амплитуд в виде двумерной цифровой матрицы. Далее амплитуды двумерной матрицы амплитуд преобразуют в яркостные или цветовые сигналы (пиксели). В результате чего двумерная матрица превращается в картину томографического сечения.

Техническим результатом отличительных действий является положительный эффект, которым не обладает прототип. Положительный эффект состоит в том, что отсутствие движения локатора не провоцирует поверхностную волну, которая мешает реконструкции изображения и не требуется помещать пациента в водную среду, что повышает комфортность томографирования.

Похожие патенты RU2728512C1

название год авторы номер документа
Способ картографирования с помощью синтеза апертуры 2019
  • Ющенко Валерий Павлович
  • Легкий Владимир Николаевич
  • Шебалкова Любовь Васильевна
RU2710021C1
Устройство томографирования с помощью кольцевой антенной решётки 2021
  • Ющенко Валерий Павлович
  • Легкий Владимир Николаевич
  • Шебалкова Любовь Васильевна
RU2765605C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОБРАЖЕНИЙ ПРОТЯЖЕННЫХ ОБЪЕКТОВ 2014
  • Мануилов Борис Дмитриевич
  • Мануилов Михаил Борисович
  • Черных Владимир Борисович
  • Резниченко Даниил Владимирович
  • Стрельченко Сергей Александрович
RU2561066C1
РАДИОЛОКАЦИОННАЯ СТАНЦИЯ С СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ И КВАЗИНЕПРЕРЫВНЫМ ИЗЛУЧЕНИЕМ 2012
  • Канащенков Анатолий Иванович
  • Матюшин Анатолий Сергеевич
  • Антипов Владимир Никитович
RU2510685C2
УСТРОЙСТВО РАДИОЛОКАЦИОННОЙ СТАНЦИИ С НЕПРЕРЫВНЫМ ЛИНЕЙНО-ЧАСТОТНО-МОДУЛИРОВАННЫМ СИГНАЛОМ И СИНТЕЗОМ АПЕРТУРЫ 2017
  • Кочнев Павел Эдуардович
  • Антонов Сергей Леонидович
  • Колтышев Евгений Евгеньевич
  • Янковский Владимир Тадэушевич
  • Фролов Алексей Юрьевич
  • Антипов Владимир Никитич
  • Валов Сергей Вениаминович
  • Мухин Владимир Витальевич
RU2660450C1
СПОСОБ ОБНАРУЖЕНИЯ СКРЫТЫХ НЕЛИНЕЙНЫХ РАДИОЭЛЕКТРОННЫХ ЭЛЕМЕНТОВ 2012
  • Якубов Владимир Петрович
  • Шипилов Сергей Эдуардович
  • Суханов Дмитрий Яковлевич
RU2516436C2
Способ картографирования земной поверхности бортовой радиолокационной станцией с антенной решеткой 2022
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Карпов Олег Анатольевич
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
RU2798822C1
Способ активной обзорной моноимпульсной радиолокации с инверсным синтезированием апертуры антенны 2018
  • Джиоев Альберт Леонидович
  • Косогор Алексей Александрович
  • Омельчук Иван Степанович
  • Приймаков Сергей Николаевич
  • Фоминченко Геннадий Леонтьевич
RU2682661C1
Способ формирования радиолокационного изображения земной поверхности бортовой радиолокационной станцией 2023
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Толстов Евгений Федорович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
RU2806651C1
СПОСОБ ИМИТАЦИИ РАДИОСИГНАЛА, ОТРАЖЕННОГО ОТ ПРОСТРАНСТВЕННО РАСПРЕДЕЛЕННОЙ ДИНАМИЧЕСКОЙ РАДИОФИЗИЧЕСКОЙ СЦЕНЫ, В РЕАЛЬНОМ ВРЕМЕНИ 2008
  • Герасимов Александр Борисович
  • Киселева Юлия Владимировна
  • Кренев Александр Николаевич
RU2386143C2

Иллюстрации к изобретению RU 2 728 512 C1

Реферат патента 2020 года Способ картографирования с помощью кольцевой антенной решётки

Предлагаемое изобретение относится к области ближней локации и может быть использовано для томографии на акустических волнах при монохроматическом зондировании окружающего пространства. В способе картографирования с помощью кольцевой антенной решетки излучают монохроматический зондирующий сигнал, принимают отраженный сигнал. При этом осуществляют управление сканирующим пространство фокусом с помощью неподвижной кольцевой антенной решетки путем задания рассчитанных начальных фаз на каждом излучающем элементе кольцевой антенной решетки, формирование матрицы изображения путем распределения принятого фокусом сигнала по элементам дальности, в соответствии с областью реконструкции, и преобразование матрицы в яркостные сигналы для получения изображения сечения томографируемого объекта. Изобретение обеспечивает упрощение системы регистрации данных при томографировании и повышение качества изображения. 1 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 728 512 C1

1. Способ картографирования с помощью кольцевой антенной решетки, заключающийся в излучении монохроматического зондирующего сигнала, приеме отраженного сигнала, управлении сканирующим пространство фокусом, формировании матрицы изображения путем распределения принятого фокусом сигнала по элементам дальности, в соответствии с областью реконструкции, преобразовании матрицы в яркостные сигналы для получения изображения сечения томографируемого объекта, отличающийся тем, что управление пространственным положением фокуса осуществляют с помощью неподвижной кольцевой антенной решетки путем задания рассчитанных начальных фаз на каждом излучающем элементе кольцевой антенной решетки.

2. Способ по п. 1, отличающийся тем, что начальные фазы излучающих антенных элементов кольцевой решетки устанавливаются с помощью управляемых фазовращателей и рассчитываются по формулам

где Ri - расстояние от k-го элемента матрицы изображения до i-го элемента кольцевой антенной решетки, si - амплитуда волны на выходе i-го элемента кольцевой антенной решетки, R0 - радиус кольцевой антенной решетки, δk - расстояние от центра кольцевой антенной решетки до k-го элемента матрицы изображения, λ - длина ультразвуковой волны, θi - меняющийся угол между δk и Ri при смене i-го элемента кольцевой антенной решетки, ni - целое число волн λ, укладывающихся на отрезке Ri, цифра 4 означает, что волна проходит удвоенное расстояние Ri, то есть от фокуса до элемента кольцевой антенной решетки и обратно.

Документы, цитированные в отчете о поиске Патент 2020 года RU2728512C1

RU 2066060 C1, 27.08.1996
US 2014316269 A1, 23.10.2014
УЛЬТРАЗВУКОВОЙ ТОМОГРАФ И КОЛЬЦЕВАЯ АНТЕННАЯ РЕШЕТКА ДЛЯ УЛЬТРАЗВУКОВОГО ТОМОГРАФА 1999
  • Пархоменко П.П.
  • Каравай М.Ф.
  • Сухов Е.Г.
  • Фалеев Б.А.
  • Дмитриев О.В.
  • Дроздов С.А.
  • Комаров О.В.
  • Бабин Л.В.
  • Попов А.С.
  • Буров В.А.
  • Раттэль М.И.
  • Бобов К.Н.
  • Конюшкин А.Л.
  • Румянцева О.Д.
RU2145797C1
СПОСОБ ОБНАРУЖЕНИЯ ЖИВЫХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Михайлов Александр Николаевич
  • Михайлов Евгений Александрович
RU2442186C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Алёхин Сергей Геннадиевич
  • Самокрутов Андрей Анатольевич
  • Соколов Никита Юрьевич
  • Шевалдыкин Виктор Гавриилович
RU2458342C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОБРАЖЕНИЙ ПРОТЯЖЕННЫХ ОБЪЕКТОВ 2014
  • Мануилов Борис Дмитриевич
  • Мануилов Михаил Борисович
  • Черных Владимир Борисович
  • Резниченко Даниил Владимирович
  • Стрельченко Сергей Александрович
RU2561066C1
МИКРОВОЛНОВОЕ ТОМОГРАФИЧЕСКОЕ УСТРОЙСТВО ДЛЯ СПЕКТРОСКОПИИ И СПОСОБ ЕЕ ОСУЩЕСТВЛЕНИЯ 1995
  • Свенсон Роберт Х.
  • Семенов С.Ю.
  • Баранов В.Ю.
RU2238033C2
НЕПОДВИЖНАЯ АНТЕННА ДЛЯ РАДИОЛОКАТОРА КРУГОВОГО ОБЗОРА И СОПРОВОЖДЕНИЯ 2008
  • Маруженко Владимир Анатольевич
  • Мительштедт Светослав Яковлевич
  • Морозов Герман Алексеевич
  • Сухачева Тамара Ивановна
RU2389111C1
US 2018206827 A1, 26.07.2018
US 5305752 A, 26.04.1994
JP 2009153573 A, 16.07.2009
US 7025725 B2, 11.04.2006.

RU 2 728 512 C1

Авторы

Ющенко Василий Павлович

Гофман Ольга Валерьевна

Дулуба Татьяна Валерьевна

Даты

2020-07-30Публикация

2019-07-25Подача