СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ Российский патент 2020 года по МПК C25D11/08 

Описание патента на изобретение RU2714015C1

Изобретение относится к области получения коррозионностойких покрытий на изделиях из алюминия и его сплавов и может быть использовано в машиностроении, приборостроении, химической и других отраслях промышленности.

Известен [1] способ получения покрытий [Пат. RU №2354759 C25D 11/24. Способ получения покрытий. Чуфистов О.Е., Демин С.Б, Чуфистов Е.А., Борисков Д.Е., Холудинцев П.А. - Бюл. 13/2007], включающий оксидирование изделий в кислых растворах и последующий нагрев, отличающийся тем, что оксидирование осуществляют в течение 30-50 мин, затем изделия выдерживают в кипящем растворе с содержанием едкого натра 0,2-0,4 г/л в течение 40-50 мин, после чего нагревают от 300 до 550°С со скоростью 5-10°С/мин в течение 30-60 мин. Недостатком известного технического решения является технологическая опасность процесса и высокие временные затраты.

Известен [2] способ получения покрытий [Пат. RU №2495161 C25D 11/24. Способ получения покрытий. Чуфистов О.Е., Чуфистов Е.А., Будимиров А.В., Агапова Т.А., Борисков Д.Е., Дёмин С.Б., Захаркин А.А. - Бюл. 28/2013], включающий оксидирование изделий из алюминия и его сплавов в кислых растворах в течение 30-50 мин, дальнейшую выдержку в кипящем водном растворе едкого натра 0,2-0,4 г/л в течение 40-50 мин и последующий нагрев, при этом в качестве растворителя в кислых растворах используют деионизированную воду, а последующий нагрев осуществляют в три приема, при этом сначала изделия нагревают до температуры 260-270°С и выдерживают в течение 3-5 минут, затем нагревают до температуры 460-470°С и выдерживают в течение 3-5 мин, а далее нагревают до температуры 530-545°С и выдерживают в течение 8-15 мин. Недостатком известного технического решения является технологическая опасность процесса и высокие энергозатраты.

Наиболее близким к предлагаемому способу является способ получения покрытий [Пат. RU №2238352 C25D 11/02. Способ получения покрытий. 2004. Казанцев И.А., Скачков B.C., Розен А.Е., Кривенков А.О. Бюл. 29/2004], включающий микродуговое оксидирование в комбинированном электролите на основе жидкого стекла, хромата натрия и гидроксида натрия при постоянном токе плотностью тока 5-25 А/дм2 и напряжении 120-500 В. [3]. Недостатком известного технического решения является высокая пористость и низкая коррозионная стойкость покрытий.

Задачей заявляемого технического решения является создание простого в осуществлении способа, обеспечивающего получение качественных коррозионностойких покрытий на алюминии и его сплавах, за счет снижения пористости, устранение стадий высокотемпературной термической обработки, пропитки и ультразвуковой обработки, а также снижение технологической опасности процесса, временных и энергозатрат.

Техническим результатом является получение качественных коррозионностойких покрытий на основе кристаллического оксида алюминия Al2O3 без промежуточной стадии формирования аморфного оксида на основе Al2O3 с одновременным снижением технологической опасности процесса, временных и энергозатрат.

Поставленная задача решается тем, что согласно предлагаемому решению, изделие подвергают микродуговому оксидированию в электролите, содержащем водный раствор борной кислоты и гидроксида натрия, следующего состава, г/л:

Н3ВО3 20-30 NaOH 4-6

При недостаточной концентрации Н3ВО3 происходит анодирование и микродуговой процесс не включается, а при превышении данного диапазона напряжение на ванне превышает 600 В, что ведет к неоправданному расходу энергии. При превышении этого интервала NaOH процесс протекает нестабильно, а при концентрации меньше 4 г/л NaOH затруднено формирование микродуговых разрядов.

Оксидирование проводят при плотности постоянного тока с 5-10 А/дм2 в течение 70-90 мин.

Способ реализуется следующим образом:

Изделие из алюминия и его сплава помещают в ванну с электролитом. Затем на электроды закрепленные на изделии (анод) и внутренней поверхности ванны (катод) подают постоянный электрический ток, плотность которого составляет 5-10 А/дм2 и проводят процессе микродугового оксидирования в течение 70-90 минут. После завершения процесса изделие извлекают из ванны, промывают в проточной воде в течение 2-3 мин и сушат на воздухе при температуре 20-30°С в течение 15-20 мин.

Пример 1. Изделия из алюминиевого сплава А5 и АМг5 подвергали микродуговому оксидированию, согласно описанному выше способу, в электролите, содержащем водный раствор борной кислоты с концентрацией 25 г/л Н3ВО3 и гидроксида натрия с концентрацией 5 г/л NaOH при плотности постоянного тока 8 А/дм2 и температуре электролита 25°С в течение 90 минут. Затем изделия промывали в проточной воде в течение 3 минут и сушили на воздухе при температуре 25°С в течение 18 мин.

Пример 2. Изделия из алюминиевого сплава А5 и АМг5 подвергали микродуговому оксидированию, согласно описанному выше способу, в электролите, содержащем водный раствор борной кислоты с концентрацией 20 г/л Н3ВО3 и гидроксида натрия с концентрацией 6 г/л NaOH при плотности постоянного тока 10 А/дм2 и температуре электролита 30°С в течение 70 минут. Затем изделия промывали в проточной воде в течение 3 минут и сушили на воздухе при температуре 20°С в течение 20 мин.

Далее по стандартным методикам определяли коррозионностойкость покрытий. Полученные результаты представлены в таблице.

Источники информации:

1. Патент RU №2354759. Способ получения покрытий. Чуфистов О.Е., Демин С.Б, Чуфистов Е.А., Борисков Д.Е., Холудинцев П.А., опубл. 24.09.2007, Бюл. 13.

2. Патент RU №2495161 Способ получения покрытий. Чуфистов О.Е., Чуфистов Е.А., Будимиров А.В., Агапова Т.А., Борисков Д.Е., Дёмин С.Б., Захаркин А.А., опубл. 10.10.2013, Бюл. 28.

3. Патент RU №2238352. Способ получения покрытий. Казанцев И.А., Скачков B.C., Розен А.Е., Кривенков А.О., опубл. 20.10.2004, Бюл. 29.

Похожие патенты RU2714015C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ПОВЕРХНОСТЯХ ВНУТРЕННИХ ПОЛОСТЕЙ ИЗДЕЛИЙ ИЗ СПЛАВОВ МЕТАЛЛОВ ВЕНТИЛЬНОЙ ГРУППЫ 2022
  • Чуфистов Олег Евгеньевич
  • Золкин Алексей Николаевич
  • Чуфистов Евгений Алексеевич
  • Павлов Андрей Иванович
RU2803795C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ПОВЕРХНОСТЯХ ГЛУБОКИХ СКВОЗНЫХ ОТВЕРСТИЙ В ИЗДЕЛИЯХ ИЗ СПЛАВОВ ВЕНТИЛЬНЫХ МЕТАЛЛОВ 2017
  • Чуфистов Олег Евгеньевич
  • Чуфистов Евгений Алексеевич
  • Цибизов Павел Николаевич
  • Вяльмисов Владислав Олегович
  • Филатов Павел Михайлович
RU2669952C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ПОВЕРХНОСТЯХ ГЛУБОКИХ СКВОЗНЫХ ОТВЕРСТИЙ С ПРЯМЫМИ И ИСКРИВЛЕННЫМИ ОСЯМИ В ИЗДЕЛИЯХ ИЗ СПЛАВОВ ВЕНТИЛЬНЫХ МЕТАЛЛОВ 2018
  • Чуфистов Олег Евгеньевич
  • Чуфистов Евгений Алексеевич
  • Филатов Павел Михайлович
  • Майборода Владимир Александрович
  • Нетесанов Максим Алексеевич
RU2694859C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ДЕТАЛЯХ ИЗ СПЛАВОВ ВЕНТИЛЬНЫХ МЕТАЛЛОВ 2017
  • Чуфистов Олег Евгеньевич
  • Чуфистов Евгений Алексеевич
  • Филатов Павел Михайлович
  • Цибизов Павел Николаевич
  • Жарков Михаил Сергеевич
RU2676380C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ 2009
  • Чуфистов Олег Евгеньевич
  • Чуфистов Евгений Алексеевич
  • Дёмин Станислав Борисович
  • Борисков Дмитрий Евгеньевич
  • Гущин Вячеслав Владимирович
RU2395632C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ПОВЕРХНОСТЯХ ГЛУХИХ ОТВЕРСТИЙ ДЕТАЛЕЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2011
  • Чуфистов Олег Евгеньевич
  • Артемов Игорь Иосифович
  • Чуфистов Евгений Алексеевич
  • Агапова Татьяна Александровна
  • Гусенков Евгений Валерьевич
RU2471895C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ 2012
  • Чуфистов Олег Евгеньевич
  • Чуфистов Евгений Алексеевич
  • Будимиров Александр Владимирович
  • Агапова Татьяна Александровна
  • Борисков Дмитрий Евгеньевич
  • Дёмин Станислав Борисович
  • Захаркин Андрей Александрович
RU2495161C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ 2013
  • Чуфистов Олег Евгеньевич
  • Чуфистов Евгений Алексеевич
  • Артемьев Владимир Петрович
  • Будимиров Александр Владимирович
  • Тихонов Александр Александрович
RU2527107C1
СПОСОБ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ СПЛАВОВ МЕТАЛЛОВ ВЕНТИЛЬНОЙ ГРУППЫ СО СКВОЗНЫМИ ОТВЕРСТИЯМИ ЭЛЕКТРОХИМИЧЕСКИМ ОКСИДИРОВАНИЕМ 2017
  • Чуфистов Олег Евгеньевич
  • Чуфистов Евгений Алексеевич
  • Вяльмисов Владислав Олегович
RU2661135C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ 2009
  • Чуфистов Олег Евгеньевич
  • Чуфистов Евгений Алексеевич
  • Родайкин Николай Васильевич
  • Родиков Антон Васильевич
RU2393274C1

Реферат патента 2020 года СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении, химической и других отраслях промышленности. Способ включает микродуговое оксидирование в течение 70-90 минут в электролите, содержащем водный раствор борной кислоты и гидроксида натрия с концентрацией 20-30 г/л и 4-6 г/л соответственно, при этом микродуговое оксидирование проводят при плотности постоянного тока 5-10 А/дм2 и температуре электролита 25 или 30 °С. Техническим результатом является получение качественных коррозионностойких покрытий на основе кристаллического оксида алюминия Al2O3 без промежуточной стадии формирования аморфного оксида на основе Al2O3 с одновременным снижением технологической опасности процесса, временных и энергозатрат. 1 табл., 2 пр.

Формула изобретения RU 2 714 015 C1

Способ получения покрытия на изделиях из алюминия и сплавов на его основе, включающий микродуговое оксидирование в течение 70-90 минут в электролите, содержащем водный раствор борной кислоты и гидроксида натрия с концентрацией 20-30 г/л и 4-6 г/л соответственно, отличающийся тем, что микродуговое оксидирование проводят при плотности постоянного тока 5-10 А/дм2 и температуре электролита 25 или 30 °С.

Документы, цитированные в отчете о поиске Патент 2020 года RU2714015C1

Чуфистов А.Е
Разработка технологии микродугового оксидирования изделий из алюминиевых сплавов на основе исследования структуры и свойств получаемых покрытий
Диссертация на соискание ученой степени кандидата технических наук
Пенза, ПГУ, 1999, с
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1
СПОСОБ ПРЕДВАРИТЕЛЬНОЙ ОЦЕНКИ ПРИГОДНОСТИ СТАНДАРТНОГО АЛЮМИНИЕВОГО СПЛАВА К ОБРАБОТКЕ МИКРОДУГОВЫМ ОКСИДИРОВАНИЕМ И ТОЛЩИНЫ ПОЛУЧАЕМОГО ПОКРЫТИЯ 2008
  • Чуфистов Олег Евгеньевич
  • Чуфистова Надежда Александровна
  • Демин Станислав Борисович
  • Борисков Дмитрий Евгеньевич
RU2403325C2
СПОСОБ ПОЛУЧЕНИЯ ЧЕРНОГО ИЗНОСОСТОЙКОГО АНТИКОРРОЗИОННОГО ПОКРЫТИЯ НА АЛЮМИНИИ И СПЛАВАХ НА ЕГО ОСНОВЕ МЕТОДОМ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ 2014
  • Ракоч Александр Григорьевич
  • Мелконьян Карен Саркисович
  • Монахова Евгения Петровна
  • Гладкова Александра Александровна
  • Пустов Юрий Александрович
RU2570869C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ 1998
  • Атрощенко Э.С.
  • Чуфистов О.Е.
  • Казанцев И.А.
  • Дурнев В.А.
RU2136788C1

RU 2 714 015 C1

Авторы

Улин Игорь Всеволодович

Красиков Алексей Владимирович

Марков Михаил Александрович

Быкова Алина Дмитриевна

Даты

2020-02-11Публикация

2019-01-11Подача