Способ восстановления активности катализатора относится к нефтеперерабатывающей промышленности, в частности к восстановлению активности цеолитсодержащих катализаторов изодепарафинизации дизельных фракций.
Окислительное удаление серы и кокса с поверхности отработанного катализатора приводит к восстановлению активности до уровня 70-85%, применение дополнительной обработки окислительно регенерированных катализаторов химическими реагентами может способствовать увеличению степени восстановления активности до 95% и более. Для реализации этой стадии катализатор пропитывают водными или органическими растворами различных органических или неорганических соединений, выдерживают при определенной температуре, сушат и сульфидируют. Выбор метода восстановления активности катализатора зависит не только от достигнутого технического результата, но и от экономической целесообразности его реализации на конкретной площадке для отработанного в конкретных условиях катализатора.
Что касается цеолитсодержащих катализаторов депарафинизации / изодепарафинизации, принципы их реактивации аналогичны реактивации катализаторов гидроочистки, поскольку реактивация обеспечивает восстановление активной металлической фазы, присутствующей в катализаторах обоих процессов. Несмотря на это, реактивация таких катализаторов требует дополнительного контроля физико-химических характеристик, обусловленного, прежде всего, возможностью изменения при обработке хелатирующими агентами структуры цеолита - основного кислотного компонента катализатора.
Известен способ регенерации дезактивированного катализатора гидроочистки углеводородного сырья, включающего в состав молибден, кобальт или никель, серу и носитель, по которому дезактивированный катализатор прокаливают при температуре не более 550°С в токе воздуха; далее пропитывают раствором лимонной кислоты в воде, или как минимум одном органическом растворителе, или в смеси воды и органических растворителей (в качестве органического растворителя используют спирты с одной или несколькими гидроксильными группами или их метиловые, или этиловые эфиры) и далее сушат на воздухе при температуре 50-220°С в течение 1-24 ч. Перед пропиткой прокаленный катализатор вакуумируют до остаточного давления не более 50 Торр. Способ позволяет восстановить активность катализаторов более чем на 99%. (Патент РФ №2484896, 09.04.2012).
Недостатком способа является то, что представленные в патенте данные не позволяют выбрать оптимальный органический растворитель для приготовления пропиточного раствора для восстановления активности. Оценка восстановления активности для катализаторов по представленным примерам - от 99,6 до 100,6%, однако не указывается, для какой точки эксперимента проведен расчет, является ли это начальной активностью, сохраняется ли активность с течением времени. Соответственно, не представляется возможным сделать вывод о стабильности работы катализатора.
Также известен способ регенерации катализатора гидроочистки дизельного топлива, включающего в состав молибден, кобальт, серу и носитель, в котором молибден и кобальт содержатся в катализаторе в форме смеси комплексных соединений Со(С6Н6О7), Н4[Мо4(C6H5O7)2O11], Н3[Со(ОН)6Mo6O18], сера содержится в форме сульфат-аниона SO42-. (Патент РФ №2622040, 22.08.2016).
Недостатки способа регенерации катализатора в патенте РФ №2622040 аналогичны указанным при анализе патента РФ №2484896, 09.04.2012.
Наиболее близким к предлагаемому техническому решению является способ регенерации дезактивированного катализатора гидроочистки, описанный в патенте РФ №2674157, 07.08.2018. По описанному способу дезактивированный катализатор прокаливают при температуре не более 650°С, далее контактируют с реактивирующим раствором, содержащим 0,55-2,7 моль/л лимонной кислоты в водном растворе, содержащем 10-20 масс. % бутилдигликоля и 10-20 масс. % диэтиленгликоля. Катализатор, выгруженный из пропитывателя непрерывным потоком, подается на сушку. В результате получают катализатор, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, содержащий, мас. %: Со(C6H6O7) - 6,3-13,0; Н4[Мо4(C6H5O7)2O11] - 8,6-11,2; H3[Co(OH)6Mo6O18] - 6,2-7,7; Н6[P2Mo5O23] - 4,0-10,2; SO42- - 0,7-2,6; PO43- - 0,5-4,4; носитель - остальное. (Патент РФ 2674157, 07.08.2018).
Недостатком способа является высокая температура прокаливания дезактивированного катализатора, которая может достигать 650°С. При температуре выше 500°С, помимо удаления кокса, частично происходит испарение оксида молибдена, являющегося активным компонентом катализатора. Кроме того, высокие температуры регенерации приводят к образованию шпинелей и спеканию частиц металлов, что способствует снижению активности катализатора. Для прокалки при такой температуре в промышленных условиях потребуются дополнительные энергозатраты.
Общим недостатком прототипа и других представленных патентов является то, что они описывают способ восстановления активности катализаторов гидроочистки, соответственно, не показана возможность их применения для восстановления активности катализаторов других гидропроцессов, в частности катализаторов изодепарафнизации, и информация о влиянии проводимых операций на цеолиты в составе катализаторов изодепарафинизации.
Задачей предлагаемого изобретения является разработка способа восстановления активности дезактивированного цеолитсодержащего катализатора изодепарафинизации дизельного топлива путем его окислительной регенерации или окислительной регенерации с последующей реактивацией пропиткой хелатирующими агентами, позволяющего осуществить получение низкозастывающего дизельного топлива с активностью и селективностью на уровне, соответствующем аналогичному свежему катализатору.
Для решения поставленной задачи предлагается способ восстановления активности дезактивированного катализатора процесса гидропереработки, который отличается тем, что в качестве катализатора используют катализатор процесса изодепарафинизации дизельного топлива, содержащий оксиды никеля, молибдена, меди, бора и/или фосфора и алюминия, который подвергают регенерации, включающей сушку катализатора в токе азота при температуре до 200-210°С в течение 3 часов, последующую обработку катализатора в токе азота при 310-320°С - в течение не менее 8 часов, дальнейшую обработку катализатора в азотно-воздушной среде с концентрацией кислорода 2% об. при ступенчатом подъеме температуры до 470°С с выдержкой не менее 15 часов при каждой из температур в интервале 380-390, 410-420, 465-470°С.
В случае необходимости после регенерации проводят реактивацию цеолитсодержащего катализатора пропиткой водным раствором диэтиленгликоля (ДЭГ), причем ДЭГ берут в количестве, обеспечивающем мольное соотношение (Ni+Mo) / ДЭГ, равное 1/1, либо используют смесь ДЭГ и лимонной кислоты (ЛК), причем ДЭГ и ЛК берут в количестве, обеспечивающем мольное соотношение (Ni+Mo) / (50-70% масс. ДЭГ + 50-30% масс. ЛК), равное 1/1, после чего катализатор выдерживают в пропиточном растворе, провяливают и сушат при температуре 110°С в течение не менее 10 часов, с последующей обработкой катализатора при температуре 350°С в течение 4 часов на воздухе.
Таким образом, способ восстановления активности дезактивированного цеолитсодержащего катализатора изодепарафинизации дизельного топлива включает следующие стадии:
- окислительную регенерацию дезактивированного катализатора,
- реактивацию регенерированного катализатора, включающую приготовление раствора органических агентов, пропитку и «созревание» регенерированного катализатора;
- термическую обработку реактивированного катализатора.
1. Окислительная регенерация дезактивированного катализатора
Включает этапы обработки в токе азота при температуре не выше 320°С, и 3 этапа обработки в азотно-воздушной среде с концентрацией кислорода 2% об. при конечной температуре в интервале 450-500°С. В интервале 450-500°С происходит достаточно полное удаление кокса, а также восстановление поверхности до 80% от поверхности свежего катализатора. Данный температурный интервал является оптимальным для регенерации цеолитсодержащих катализаторов.
2. Приготовление раствора органических агентов, пропитка и «созревание» регенерированного катализатора
Для реактивации готовят водный раствор диэтиленгликоля (ДЭГ), который берут в количестве, обеспечивающем мольное соотношение (Ni+Mo) /ДЭГ, равное 1/1, либо используют смесь ДЭГ и лимонной кислоты (ЛК) в количестве, обеспечивающем мольное соотношение (Ni+Mo) / (50-70% масс. ДЭГ + 50-30% масс. ЛК), равное 1/1.
Для этого берут объем воды, равный 70% от влагоемкости регенерированного катализатора изодепарафинизации, который требуется подвергнуть реактивации. Раствор перемешивают при температуре 70-80°С до полного растворения лимонной кислоты и доводят его объем дистиллированной водой до 100% от влагоемкости регенерированного катализатора.
Регенерированный катализатор изодепарафинизации сушат и заливают приготовленным раствором органических агентов и тщательно перемешивают, не разрушая гранулы в течение 5 минут. Оставляют катализатор в закрытом сосуде, обеспечивающем отсутствие испарения воды до полного поглощения регенерированным катализатором раствора органических реагентов.
3. Термическая обработка реактивированного катализатора
Влажный катализатор провяливают на воздухе при комнатной температуре в течение 12 часов. Затем подвергают сушке в режиме ступенчатого подъема температуры с выдержкой при температуре 110°С с возможной последующей прокалкой при температуре 350°С.
Предлагаемый способ восстановления активности никель-молибденового цеолитсодержащего катализатора изодепарафинизации позволяет получить катализатор с площадью поверхности не менее 210 кв. м/г, объемом мезопор не менее 0,19 мл/г, сохранением фазы цеолитов катализатора, содержанием сильных кислотных центров, определенных методом термопрограммируемой десорбции аммиака (ТПД NH3), не более 30%.
Степень восстановления активности такого катализатора - до 95% активности аналогичного свежего катализатора с прогнозом стабильной работы свыше 2 лет. Полученный катализатор обеспечивает селективность катализатора в целевых реакциях превращения длинноцепочечных н-алканов с получением дизельного топлива зимнего или арктического с предельной температурой фильтруемости не выше минус 38°С по ГОСТ 32511 или ГОСТ Р 55475. Способ реализуем с использованием недорогих, коммерчески доступных реагентов отечественного производства на основе простых технологических стадий.
Реализация предлагаемого способа иллюстрируется примерами.
Пример 1
Восстановлению активности подвергают цеолитсодержащий никель-молибденовый катализатор, приготовленный соэкструзией по патенту RU №2662934, 31.07.2018, который эксплуатировался в течение 6 месяцев в процессе изодепарафинизации дизельных фракций. Катализатор содержит смесь высококремнеземных цеолитов, гидрирующие металлы - никель и молибден, промотор триоксид бора и связующее на основе гидрооксида алюминия.
Проводят окислительную регенерацию исходного дезактивированного катализатора по следующей схеме: сушка катализатора в токе азота при температуре до 200-210°С в течение 3 часов; регенерация в токе азота при 310-320°С в течение не менее 8 часов, регенерация в азотно-воздушной среде с концентрацией кислорода 2% об. со ступенчатым подъемом температуры до 470°С с выдержкой не менее 15 часов при каждой из температур в интервале 380-390, 410-420, 465-470°С.
Полученный катализатор имеет площадь поверхности 211 кв. м/г, что соответствует 80% площади поверхности аналогичного свежего катализатора (263 м2/г), объем мезопор 0,21 кв. м/г, доля сильных кислотных центров по ТПД NH3 - 25%, что незначительно больше, чем в свежем катализаторе (на 9%), что позволяет поддерживать селективность катализатора в целевых реакциях.
При изодепарафинизации дизельной фракции 180-350°С, имеющей температуру помутнения минус 5°С, температуру застывания минус 14°С, при давлении 3,5 МПа, температуре 325°С получен нестабильный гидрогенизат с температурой застывания минус 56°С, из которого выделено целевое дизельное топливо с выходом 90,8% масс., с температурой вспышки выше 55°С, предельной температурой фильтруемости (ПТФ) минус 38°С, по остальным показателям соответствующее требованиям к дизельному топливу зимнему класса 3 по ГОСТ 32511-2013.
Оценочное значение восстановления активности регенерированного в соответствии с приведенным примером никель-молибденового цеолитсодержащего катализатора, определенные на основе данных сравнения наблюдаемых констант скорости процесса изодепарафинизации с прогнозом на 720 суток пробега, составляет 86,4% активности свежего катализатора. Регенерированный катализатор может эксплуатироваться на установке изодепарафинизации с добавлением до 10-15% свежего катализатора, либо самостоятельно в случае, если реактор изодепарафинизации байпасируется в летний период.
Пример 2
Дезактивированный цеолитсодержащий никель-молибденовый катализатор после окислительной регенерации по примеру 1 подвергали реактивации. Для этого готовили раствор лимонной кислоты (ЛК) и диэтиленгликоля (ДЭГ) в воде. Требуемый объем воды равен 70-80% от влагоемкости регенерированного катализатора, который требуется подвергнуть реактивации. ДЭГ и ЛК для приготовления смеси берут в равных количествах. ДЭГ + ЛК берут в количестве, обеспечивающем их мольное отношение к металлам в катализаторе (Ni+Mo), равное 1/1.
В воду добавляют ДЭГ, лимонную кислоту, раствор перемешивают при температуре 70-80°С до полного растворения лимонной кислоты и доводят его объем дистиллированной водой до 100% от влагоемкости регенерированного катализатора.
Регенерированный катализатор изодепарафинизации сушат, если после регенерации он не был затарен в герметичную упаковку, вакуумируют до остаточного давления 5-10 мм рт.ст. и заливают приготовленным раствором органических агентов и тщательно перемешивают, не разрушая гранулы в течение 5 минут. Затем катализатор периодически перемешивают в закрытом сосуде, обеспечивающем отсутствие испарения воды, не разрушая гранулы, в котором оставляют до полного поглощения регенерированным катализатором раствора органических реагентов, но не менее 10 часов.
Влажный катализатор провяливают на воздухе при комнатной температуре в течение 12 часов. Затем подвергают сушке на воздухе в режиме ступенчатого подъема температуры:
- подъем до температуры 60°С (1°С/мин), выдержка в течение 2 часов;
- подъем до температуры 80°С (1°С/мин), выдержка в течение 2 часов;
- подъем до температуры 110°С (1°С/мин), выдержка в течение 10 часов;
- подъем до температуры 350°С (1°С/мин), выдержка в течение 4 часов.
Полученный катализатор имеет площадь поверхности 245 кв. м/г, что соответствует 93% площади поверхности аналогичного свежего катализатора (263 м2/г), объем мезопор 0,19 кв. м/г, площадь поверхности, имеющей диаметр пор 3,4-10 нм, (190 кв. м/г). Реактивированный в соответствии с представленным примером катализатор изодепарафинизации содержит кислотные центры средней силы, аналогично свежему катализатору, доля сильных кислотных центров по ТПД NH3 - 27%, что незначительно больше, чем в свежем катализаторе (на 11%), что позволяет поддерживать селективность катализатора в целевых реакциях. Методом рентгенофазового анализа установлено наличие фазы, относящейся к цеолиту, что свидетельствует о том, что цеолиты не разрушились в процессе реактивации органическими агентами.
При изодепарафинизации дизельной фракции 180-350°С, имеющей температуру помутнения минус 5°С, температуру застывания минус 14°С, при давлении 3,5 МПа, температуре 325°С получен нестабильный гидрогенизат с температурой застывания минус 53°С, из которого выделено целевое дизельное топливо с выходом 92,1% масс., с температурой вспышки выше 55°С, предельной температурой фильтруемости (ПТФ) минус 38°С, по остальным показателям соответствующее требованиям к дизельному топливу зимнему класса 3 по ГОСТ 32511-2013. Арктическое дизельное топливо с ПТФ ниже минус 44°С получено при температуре процесса 335°С. Выход целевого дизельного топлива на реактивированном катализаторе выше, чем на регенерированном по примеру 1 (90,8% масс.), близок к выходу на свежем катализаторе (92,9% масс.).
Оценочное значение восстановления активности реактивированного в соответствии с приведенным примером никель-молибденового цеолитсодержащего катализатора, определенное на основе данных сравнения наблюдаемых констант скорости процесса изодепарафинизации с прогнозом на 720 суток пробега, составляет 94,6% активности свежего катализатора. Активность катализатора восстанавливается практически полностью, метод реактивации реализуем на основе простых технологических стадий с использованием недорогих, коммерчески доступных реагентов отечественного производства.
название | год | авторы | номер документа |
---|---|---|---|
Способ реактивации катализатора гидроочистки дизельного топлива | 2020 |
|
RU2758845C1 |
Способ восстановления активности цеолитсодержащего катализатора | 2019 |
|
RU2690947C1 |
Способ реактивации катализатора гидроочистки | 2020 |
|
RU2725629C1 |
Способ реактивации дезактивированного катализатора гидроочистки | 2020 |
|
RU2757365C1 |
Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием | 2017 |
|
RU2662934C1 |
РЕГЕНЕРИРОВАННЫЙ КАТАЛИЗАТОР ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ, СПОСОБ РЕГЕНЕРАЦИИ ДЕЗАКТИВИРОВАННОГО КАТАЛИЗАТОРА И ПРОЦЕСС ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ | 2012 |
|
RU2484896C1 |
Реактивированный катализатор гидроочистки | 2020 |
|
RU2731459C1 |
Способ регенерации дезактивированного катализатора гидроочистки | 2018 |
|
RU2674157C1 |
Способ гидроочистки дизельного топлива | 2020 |
|
RU2724613C1 |
КОМПЛЕКСНЫЙ СПОСОБ ВОССТАНОВЛЕНИЯ АКТИВНОСТИ КАТАЛИЗАТОРОВ ГИДРОПРОЦЕССОВ | 2020 |
|
RU2748975C1 |
Изобретение относится к нефтеперерабатывающей промышленности, в частности к восстановлению активности цеолитсодержащих катализаторов изодепарафинизации дизельных фракций. Изобретение касается способа восстановления активности дезактивированного катализатора процесса гидропереработки, отличающегося тем, что в качестве катализатора используют катализатор процесса изодепарафинизации дизельного топлива, содержащий оксиды никеля, молибдена, меди, бора и/или фосфора и алюминия, который подвергают регенерации, включающей сушку катализатора в токе азота при температуре до 200-210°С в течение 3 часов, последующую обработку катализатора в токе азота при 310-320°С в течение не менее 8 часов, дальнейшую обработку катализатора в азотно-воздушной среде с концентрацией кислорода 2% об. при ступенчатом подъеме температуры до 470°С с выдержкой не менее 15 часов при каждой из температур в интервале 380-390, 410-420, 465-470°С, отличающийся тем, что после регенерации проводят реактивацию цеолитсодержащего катализатора пропиткой водным раствором диэтиленгликоля (ДЭГ), причем ДЭГ берут в количестве, обеспечивающем мольное соотношение (Ni+Mo) / ДЭГ, равное 1/1, либо используют смесь ДЭГ и лимонной кислоты (ЛК), причем ДЭГ и ЛК берут в количестве, обеспечивающем мольное соотношение (Ni+Mo) / (50-70% масс. ДЭГ + 50-30% масс. ЛК), равное 1/1, после чего катализатор выдерживают в пропиточном растворе, провяливают и сушат при температуре 110°С в течение не менее 10 часов, с последующей обработкой катализатора при температуре 350°С в течение 4 часов на воздухе. Техническим результатом данного изобретения является разработка способа восстановления активности дезактивированного цеолитсодержащего катализатора изодепарафинизации дизельного топлива с активностью и селективностью на уровне, соответствующем аналогичному свежему катализатору. 1 з.п. ф-лы, 2 пр.
1. Способ восстановления активности дезактивированного катализатора процесса гидропереработки, отличающийся тем, что в качестве катализатора используют катализатор процесса изодепарафинизации дизельного топлива, содержащий оксиды никеля, молибдена, меди, бора и/или фосфора и алюминия, который подвергают регенерации, включающей сушку катализатора в токе азота при температуре до 200-210°С в течение 3 часов, последующую обработку катализатора в токе азота при 310-320°С в течение не менее 8 часов, дальнейшую обработку катализатора в азотно-воздушной среде с концентрацией кислорода 2% об. при ступенчатом подъеме температуры до 470°С с выдержкой не менее 15 часов при каждой из температур в интервале 380-390, 410-420, 465-470°С.
2. Способ по п. 1, отличающийся тем, что после регенерации проводят реактивацию цеолитсодержащего катализатора пропиткой водным раствором диэтиленгликоля (ДЭГ), причем ДЭГ берут в количестве, обеспечивающем мольное соотношение (Ni+Mo) / ДЭГ, равное 1/1, либо используют смесь ДЭГ и лимонной кислоты (ЛК), причем ДЭГ и ЛК берут в количестве, обеспечивающем мольное соотношение (Ni+Mo) / (50-70% масс. ДЭГ + 50-30% масс. ЛК), равное 1/1, после чего катализатор выдерживают в пропиточном растворе, провяливают и сушат при температуре 110°С в течение не менее 10 часов, с последующей обработкой катализатора при температуре 350°С в течение 4 часов на воздухе.
РЕГЕНЕРИРОВАННЫЙ КАТАЛИЗАТОР ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ, СПОСОБ РЕГЕНЕРАЦИИ ДЕЗАКТИВИРОВАННОГО КАТАЛИЗАТОРА И ПРОЦЕСС ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ | 2012 |
|
RU2484896C1 |
Способ гидроочистки дизельного топлива | 2016 |
|
RU2622040C1 |
Способ регенерации дезактивированного катализатора гидроочистки | 2018 |
|
RU2674157C1 |
DE 59810556 D1, 12.02.2004 | |||
WO 2001002092 A1, 11.01.2001. |
Авторы
Даты
2020-02-19—Публикация
2019-11-11—Подача