Изобретение относится к методам определения механических характеристик оболочек вращения и может быть использовано для оценки их устойчивости, например, при производстве тонкостенных стеклопластиковых оболочек обтекателей летательных аппаратов.
Известен способ определения устойчивости конических оболочек под действием внешнего давления (Расчет на прочность деталей машин: Справочник / И.А. Биргер, Б.Ф. Шорр, Г.Б. Иосилевич. - М.: Машиностроение, 1993. - 640 е.: ил. С. 472). Сущность способа заключается в определении критического внешнего давления конической оболочки по формуле, учитывающей величину модуля упругости материала оболочки и ее геометрические параметры. Недостатком данного способа является то, что используемая для определения критического внешнего давления формула применима к оболочкам из изотропных материалов, в то время как стеклопластик в рассматриваемых нами оболочках материал ортотропный.
Известен способ определения устойчивости цилиндрических оболочек под действием внешнего давления, в котором величину критического внешнего давления определяют расчетным путем с учетом параметров упругости ортотропного материала оболочки, в том числе модулей упругости в окружном и продольных направлениях и ее геометрических параметров (Расчет на прочность деталей машин: Справочник/ И.А. Биргер, Б.Ф. Шорр, Г.Б. Иосилевич. - М.: Машиностроение, 1993. - 640 е.: ил. С. 475). Недостатком данного способа является то, что используемая для определения критического внешнего давления формула применима к цилиндрическим оболочкам, а в заявляемом способе рассматриваются оболочки вращения произвольной формы.
Наиболее близким по технической сущности к заявленному решению является способ, включающий создание перепада давления по стенке оболочки и измерение перемещений поверхности оболочки, который применим для контроля оболочек вращения произвольной формы (Патент на изобретение RU № 2623662, 28.06.2017. Бюл. № 19. Способ контроля тонкостенных стеклопластиковых оболочек).
Регистрируемое поле перемещений является характеристикой жесткости (упругих свойств) оболочки, которая в свою очередь является важнейшим параметром для изделий, работающих при внешнем давлении, так как основную форму отказа при данных условиях эксплуатации составляет потеря устойчивости и оценку годности тонкостенной оболочки осуществляют по результатам сравнения значений максимальных перемещений поверхности оболочки с их базовыми значениями.
При этом «значение давления для нагружения оболочки выбирается настолько малым, чтобы гарантировано не внести необратимых изменений в оболочке», базовые значения перемещений определяют расчетно, либо на эталонном образце оболочки.
К недостаткам прототипа можно отнести отсутствие определенности в выборе величины давления для нагружения оболочки при проведении контроля («чтобы гарантировано не внести необратимых изменений в оболочке»), а также отсутствие определенности в соотношении этого давления с величиной критического давления для конкретной оболочки.
Задачей заявляемого изобретения является обеспечение возможности оценки устойчивости тонкостенных стеклопластиковых оболочек в процессе производства изделий и повышение эффективности этой оценки.
Поставленная задача достигается тем, что предлагается способ оценки устойчивости тонкостенных стеклопластиковых оболочек, включающий создание перепада давления по стенке оболочки, отличающийся тем, что измеряют значения скоростей ультразвука в окружном и меридиональном направлениях контролируемой оболочки, определяют модули упругости материала контролируемой оболочки в окружном и меридиональном направлениях по предварительно построенным регрессионным зависимостям «модуль упругости-скорость ультразвука», рассчитывают величину критического перепада давления для контролируемой оболочки из построенной конечно-элементной модели оболочки с использованием модулей упругости материала данной оболочки в окружном и меридиональном направлениях и создают перепад давления по стенке оболочки, значение перепада давления для которой соответствует контрольному значению перепада давления, при этом величину перепада давления по стенке оболочки при ее испытании устанавливают 0,4÷0.6 от критического перепада давления, а прошедшие испытания оболочки, оценивают как годные.
Предлагаемый способ оценки устойчивости тонкостенных стеклопластиковых оболочек реализуется следующим образом.
Для обеспечения выполнения поставленной в заявляемом способе задачи оценки устойчивости тонкостенных стеклопластиковых оболочек создается расчетная модель напряженного состояния оболочки (в подавляющем большинстве случаев основанная на приближенных численным методах - конечно-элементном подходе), по которой определяют критические значения перепада давления (критическое давление), с учетом параметров упругости материала оболочки, в том числе модулей упругости оболочки в окружном и меридиональном направлениях.
Измеряют скорость ультразвука в контролируемой оболочке в окружном и меридиональном направлениях и по полученным результатам из предварительно построенных регрессионных зависимостей «модуль упругости - скорость ультразвука» определяют модули упругости материала данной оболочки в этих направлениях.
Регрессионные зависимости «модуль упругости - скорость ультразвука» строятся для каждого типа оболочек индивидуально в процессе экспериментальных исследований по результатам измерения скорости ультразвука в оболочках, моделирующих их структуру образцах и результатам прямого определения модуля упругости образцов.
По созданной модели, с использованием результатов определения модулей упругости материала, рассчитывают величину критического давления для контролируемой оболочки, сравнивают ее с контрольными значениями критического давления, установленными технологическим процессом (ТП) изготовления для данного типа оболочек и оценивают соответствие значения критического давления оболочки контрольными значениями.
Оболочки, соответствующие контрольными значениями критического давления, устанавливают в испытательном устройстве, в котором создают перепад давления по стенке оболочки с отношением 0,4÷0,6 к критическому давлению для данной оболочки с целью отбраковки оболочек, могущих потерять устойчивость из-за скрытых дефектов, не выявленных при дефектоскопии.
Прошедшие испытания оболочки оценивают как годные для дальнейшей их сборки в составе обтекателя.
Экспериментально установлено, что для рассматриваемых нами тонкостенных стеклопластиковых оболочек перепад давления по стенке оболочки с отношением 0,4÷0,6 к критическому давлению не приводит к необратимым изменениям в материале оболочки, что подтверждается расчетом.
Так, при среднем значении критического давления для рассматриваемых нами оболочек составляющем около 3,8ат, средние значения растягивающих напряжений в оболочках составляют 23,0МПа, а при давлении в 1,5÷2,3 ат - 9,0÷14,0 МПа, что во много раз меньше предела прочности при растяжении материала данного типа оболочек, практически на порядок.
При реализации заявляемого изобретения могут быть использованы для создания расчетной модели напряженного состояния оболочки - программный модуль, например, Ansys Composite Prep Post, а для измерения скорости ультразвука в контролируемой оболочке - ультразвуковые приборы типа «Пульсар 1.2».
Заявляемое изобретение позволяет обеспечить возможность оценки устойчивости тонкостенных стеклопластиковых оболочек в процессе производства изделий и повысить эффективности этой оценки за счет того, что при расчете величины критического давления для контролируемых оболочек используют дополнение к паспортным данным на материал, а значения модулей упругости, определенных экспериментально для каждой из этих оболочек, свойства материала которых формируются непосредственно при их изготовлении и, следовательно, могут значительно разнится между собой при каких-либо случайных отклонениях в процессе изготовления оболочек.
Сравнение заявляемого способа с прототипом показывает, что способ отличается от известного тем, что оценка устойчивости тонкостенных стеклопластиковых оболочек проводится по критическим значениям перепада давления расчетно-экспериментальным методом индивидуально для каждой контролируемой оболочки, с учетом их модулей упругости, при этом величина отношения перепада давления, создаваемого при испытании оболочки к критическому давлению, составляет 0,4÷0,6.
При изучении других технических решений в данной области техники установлено, что рассмотренные в способе отличительные признаки ранее не встречались, способ соответствует критерию изобретения «новизна» и обеспечивает достижение заданного технического результата изобретения - обеспечение возможности оценки устойчивости тонкостенных стеклопластиковых оболочек в процессе производства изделий и повышение эффективности этой оценки.
Таким образом, заявляемое техническое решение - способ оценки устойчивости тонкостенных стеклопластиковых оболочек соответствует критерию изобретения «изобретательский уровень».
Предлагаемый способ может найти применение в процессе производства различных изделий (деталей изделий) из полимерных композиционных материалов типа оболочек вращения, требующих индивидуального контроля, а также при проведении опытно- конструкторских работ по созданию подобных изделий в различных областях машиностроения.
название | год | авторы | номер документа |
---|---|---|---|
Способ контроля тонкостенных стеклопластиковых оболочек | 2016 |
|
RU2623662C1 |
Способ соединения керамического изделия с металлическим шпангоутом | 2021 |
|
RU2779164C1 |
Способ контроля тонкостенных стеклопластиковых оболочек | 2019 |
|
RU2710519C1 |
Способ контроля кажущейся плотности обожженных заготовок оболочек из кварцевой керамики | 2023 |
|
RU2813126C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТНЫХ СВОЙСТВ ПЛЕНОЧНЫХ МАТЕРИАЛОВ | 2000 |
|
RU2184361C1 |
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПРОЧНОСТИ ИЗДЕЛИЙ | 1983 |
|
SU1840508A1 |
СПОСОБ ОЦЕНКИ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ ДЫМОВЫХ И ВЕНТИЛЯЦИОННЫХ ПРОМЫШЛЕННЫХ ТРУБ (ВАРИАНТЫ) | 2004 |
|
RU2254427C1 |
БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ | 1984 |
|
RU2094695C1 |
Способ испытания на прочность обтекателей из хрупких материалов | 2017 |
|
RU2654320C1 |
Способ определения модуля упругости стеклопластиков при ультразвуковом неразрушающем контроле | 2021 |
|
RU2760472C1 |
Изобретение относится к методам определения механических характеристик оболочек вращения и может быть использовано для оценки их устойчивости, например, при производстве тонкостенных стеклопластиковых оболочек обтекателей летательных аппаратов. Способ оценки устойчивости тонкостенных стеклопластиковых оболочек заключается в том, что измеряют значения скоростей ультразвука в окружном и меридиональном направлениях контролируемой оболочки, определяют модули упругости материала контролируемой оболочки в окружном и меридиональном направлениях по предварительно построенным регрессионным зависимостям «модуль упругости-скорость ультразвука», рассчитывают величину критического перепада давления для контролируемой оболочки из построенной конечно-элементной модели оболочки с использованием модулей упругости материала данной оболочки в окружном и меридиональном направлениях и создают перепад давления по стенке оболочки, значение перепада давления для которой соответствует контрольному значению перепада давления, при этом величину перепада давления по стенке оболочки при ее испытании устанавливают 0,4÷0.6 от критического перепада давления, а прошедшие испытания оболочки оценивают как годные. Технический результат - обеспечение возможности оценки устойчивости тонкостенных стеклопластиковых оболочек в процессе производства изделий и повышение эффективности этой оценки.
Способ оценки устойчивости тонкостенных стеклопластиковых оболочек, включающий создание перепада давления по стенке оболочки, отличающийся тем, что измеряют значения скоростей ультразвука в окружном и меридиональном направлениях контролируемой оболочки, определяют модули упругости материала контролируемой оболочки в окружном и меридиональном направлениях по предварительно построенным регрессионным зависимостям «модуль упругости-скорость ультразвука», рассчитывают величину критического перепада давления для контролируемой оболочки из построенной конечно-элементной модели оболочки с использованием модулей упругости материала данной оболочки в окружном и меридиональном направлениях и создают перепад давления по стенке оболочки, значение перепада давления для которой соответствует контрольному значению перепада давления, при этом величину перепада давления по стенке оболочки при ее испытании устанавливают 0,4-0,6 от критического перепада давления, а прошедшие испытания оболочки оценивают как годные.
Способ контроля тонкостенных стеклопластиковых оболочек | 2016 |
|
RU2623662C1 |
Фокин В.И | |||
"Совершенствование методов и средств наземных статических испытаний конструкций головных обтекателей летательных аппаратов" | |||
Автореферат диссертации на соискание ученой степени кандидата технических наук, Самара - 2009, стр | |||
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы | 1923 |
|
SU12A1 |
Способ испытаний на устойчивость элементов тонкостенных конструкций | 1989 |
|
SU1670493A1 |
Способ испытания оболочечных конструкций динамическим давлением | 1985 |
|
SU1244531A1 |
Авторы
Даты
2020-04-10—Публикация
2019-09-10—Подача