Способ получения наностержней никеля с регулируемым аспектным отношением Российский патент 2020 года по МПК C25C1/08 B82B3/00 

Описание патента на изобретение RU2724264C1

Наностержни являются новым и перспективным объектом для применения в самых различных отраслях народного хозяйства, например в электронике для создания транзисторов и наносенсоров, нановольтике, в медицине для создания порционированных капсул лекарств и их активизации в нужной части организма за счет растворения капсулы.

Настоящее изобретение конкретно направлено на создание множества отдельных (единичных) никелевых наностержней цилиндрической формы с заданным аспектным отношением т.е. с требуемым отношением высоты наностержня к его ширине.

Из литературы известен способ получения комбинированных наностержней медь-никель, который включает изготовление трековой полимерной матрицы, имеющей сквозные каналы-поры, приготовление электролита из смеси водных растворов солей никеля и меди, создание на поверхности матрицы слоя меди, заполнение пор матрицы чередующимися слоями меди и никеля путем гальванического осаждения металлов, отделение полученных длинных стержней из чередующихся слоев металлов из пор полимерной матрицы (Huijun Yao, Lu Xie, Yaxiong Cheng, Jinglai Duan, Yonghui Chen, Shuangbao Lyu, Youmei Sun, Jie Liu, Tuning the coercivity of Cu/Ni multilayer nanowire arrays by tailoring, Materials & Design, Volume 123, 5 June 2017, Pages 165-173).

В известном способе полученные длинные стержни (нанопроволоки) из чередующихся слоев металлов переносились на кремниевую подложку, а уже затем производилось растворение медного слоя и изучение изменения коэрцитивной силы наностержней Cu/Ni в зависимости от различных параметров.

Недостатком способа является то, что он предназначен для использования исключительно в целях проведения единичных экспериментов и не позволяет обеспечить получение отдельных массивов наностержней никеля в промышленных масштабах.

Технической задачей предлагаемого способа является разработка технологически простого и эффективного способа получения массива отдельных никелиевых наностержней в большом количестве.

Техническим результатом является создание способа получения никелиевых наностержней в промышленных масштабах.

Поставленная техническая задача достигается в результате того, что в способе получения наностержней, включающим изготовление трековой полимерной матрицы, имеющей сквозные каналы-поры, приготовление электролита из смеси водных растворов солей никеля и меди, создание на поверхности матрицы слоя меди, заполнение пор матрицы чередующимися слоями меди и никеля путем гальванического осаждения металлов, отделение полученных длинных стержней из чередующихся слоев металлов, образующих нанопроволоки, из пор полимерной матрицы, отличающийся тем, что на одну из сторон матрицы наносят используемый в качестве подложки слой меди путем предварительного вакуумно-термического напыления с последующим наращиванием слоя меди до толщины 3-7 мкм в гальванической ванне с медным купоросом, затем матрицу, одна из сторон которой покрыта слоем меди, погружают в гальваническую ванну, содержащую смесь электролитов солей Н3ВО3 - 25-35 г/л; CuSO4*5H2O - 4-8 г/л; NiSO4*7H2O - 160-220 г/л при соотношении солей никеля и меди в диапазоне 20:1 до 30:1, циклически изменяют напряжение 0,7 В и 1,8 В для осаждения по отдельности слоев меди и никеля, длительность подачи каждого из напряжений определяется величиной протекшего заряда, которая устанавливается опытным путем и зависит от площади образца, плотности пор полимерной матрицы, осаждаемого материала и толщины слоя, после заполнения пор слоями меди и никеля трековую полимерную матрицу растворяют в растворе NaOH с концентрацией от 220 г/л до 260 г/л при температурах в интервалах от 60 до 80°С, промывают полученные нанопроволоки, состоящие из чередующихся слоев меди и никеля на медной подложке, а затем растворяют слой меди подложки и одновременно вытравливают из нанопроволок слои меди в растворе NH4OH (150-200 г/л) и CuSO4*5H2O (1 г/л) при комнатной температуре, полученную взвесь из слоев никеля, образующих никелевые стержни, из травильного раствора переносят в воду с помощью магнита.

Последовательность операций осуществления способа иллюстрируется блок-схемой на фигуре.

Конечной целью изобретения является получение большого количества относительно длинных нанопроволок, состоящих из чередующихся слоев меди и никеля которые затем делят путем растворения медных слоев на отдельные цилиндрические никелиевые наностержни с заданным аспектным отношением.

Первой операцией способа является подготовка полимерной матрицы, в порах которой производится формирование нанопроволок, из которых затем получают цилиндрические наностержни. У трековых мембран все поры являются «калиброванными», что важно для получения одинаковых нанопроволок и затем одинаковых наностержней. Матрица изготовляется известными способами - бомбардировкой полимерных пленок высокоэнергетичными частицами, пробивающими пленку насквозь.

После подготовки полимерной матрицы с заданными параметрами пор на одной из ее поверхностей создают электропроводящий слой. Создание такого слоя ведут в два этапа. На первом этапе на поверхность матрицы напыляют тонкий слой меди (до 50 нм.). Напыление ведут путем термического распыления металла в вакууме, например на установке ВУП-4. На втором этапе производят укрепление полученного тонкого слоя меди путем гальванического осаждения меди в гальванической ванне, которое ведут при постоянном напряжении. При этом толщина слоя меди увеличивается до 5 мкм.

Третьей операцией способа является приготовление электролита. Особенностью является то, что готовят два электролита, которые затем сливают вместе. Электролит представляет смесь электролитов солей Н3ВO3 - 25-35 г/л; CuSO4*5H2O - 4-8 г/л; NiSO4*7H2O - 160-220 г/л при соотношении солей никеля и меди в диапазоне 20:1 до 30:1.

Четвертая операция способа- проведение гальванического процесса в ячейке, заполненной электролитом, который был получен в процессе предыдущей операции. Для получения последовательно чередующихся слоев меди и никеля заданной высоты периодически изменяют напряжение осаждения в гальванической ванне. Циклически изменяют напряжение 0,7 В и 1,8 В для осаждения по отдельности слоев меди и никеля, длительность подачи каждого из напряжений определяется величиной протекшего заряда, которую устанавливают опытным путем. Длительность подачи каждого из напряжений зависит от площади образца, плотности пор полимерной матрицы, осаждаемого материала и толщины слоя. Время осаждения слоя меди и слоя никеля (в цикле) отличается, что связано в первую очередь с разностью концентраций ионов этих металлов в электролите, а также разностью в характере осаждения ионов меди и никеля и необходимым количеством осадка (толщины слоя). Также время осаждения отдельных пар слоев меди и никеля (цикла) изменяется по мере роста нанопроволок. Это связано с изменением условий осаждения каждого из металлов по мере заполнения порового канала (диффузионными особенностями осаждения узком поровом канале). Общее время роста может быть определено по формуле

где tобщее _ общее время роста;

t1i - время роста медного слоя;

t2i - время роста i-того никелевого слоя;

i - физический номер цикла,

N - количество пар слоев.

Пятая операция способа заключается в отделении полученного массива слоевых нанопроволок на медной подложке от полимерной матрицы. Операция проводится путем химического растворения полимерной матрицы или механического удаления полимерной матрицы. При химическом растворении матрицы ее растворяют в растворе NaOH с концентрацией от 220 г/л до 260 г/л при температурах в интервалах от 60 до 80°С, а затем полученные двухкомпонентные нанопроволоки никель-медь на медной подложке промывают.

Шестая операция способа - вытравливание медной подложки и слоев меди из полученных нанопроволок. Операцию проводят путем растворения меди в растворе NH4OH (150-200 г/л) и CuSO4*5H2O (1 г/л) при комнатной температуре.

Седьмая операция способа- перенос полученной взвеси никелевых наностержней из травильного раствора в воду с помощью магнита.

Примеры реализации способа.

Пример 1

Получение цилиндрических магнитных наностержней из никеля с диаметром 100 нм и длиной 400 нм.

Использовалась матрица - полимерная пленка со следующими характеристиками: диаметр пор - 100 нм; плотность облучения - 1,2 * 109 см-2; толщина - 12 мкм. Образец площадью 30 см2 с одной стороны покрывали методом термического вакуумного распыления тонким слоем меди на ВУП-4; толщина слоя - 50 нм. Напыленный слой затем укрепляли гальванически- путем дополнительного электроосаждения меди. Осаждение производили в растворе CuSO4 * 7Н2O - 200 г/л и H2SO4 - 10 г/л. При этом в гальванической ячейке образец располагали горизонтально. Процесс вели при постоянном токе - 400 мА в течение 30 минут. В результате одна сторона пленки полностью была закрыта проводящим слоем толщиной 7,5 мкм. Полученную пленку (матрицу) разрезали на отдельные фрагменты площадью 5 см2.

Далее матрицу фиксировали в специальной гальванической ячейке, при этом площадь осаждения составляла 2,5 см2. Процесс электроосаждения проводили с помощью программируемого потенциостата - гальваностата Elins Р - 2Х. Прибор позволял проводить измерения параметров электроосаждения и переключать режимы электроосаждения (потенциал) в зависимости от времени и/или фиксируемых показателей. Для получения слоевых нанопроволок, которые в дальнейшем будут разделены на отдельные наностержни, применяли электролит следующего состава: Н3ВО3 - 32,5 г/л; CuSO4*5H2O - 6,2 г/л; NiSO4*7H2O - 196,5 г/л. Режим осаждения задавали для получения тонких медных (жертвенных) слоев и никелевых (функциональных) длиной 400 нм. Для получения подобных структур применяли импульсный режим -: потенциал изменяли скачкообразно от 0,7 В (рост медных слоев) до 1,8 В (рост никелевых слоев). По завершению роста никелевого слоя цикл повторялся. Количество циклов - 5. Переключение потенциала происходило при достижении определенного заряда. Для слоя меди он составлял - 270 мКл; для слоя никеля - 690 мКл.

Полученный массив наностержней отделяли от трековой мембраны. Для этого матрицу (трековая мембрана) растворяли в растворе NaOH - 240 г/л при температуре 60°С в течении 2 часов. Затем выделенный массив нанопроволок, состоящий из отдельных гетероструктурных наностержней, зафиксированных на общей медной подложке, промывали в дистиллированной воде.

На следующем этапе растворяли медь (общая подложка и «жертвенные» слои меди в каждой из нанопроволок) в растворе NH4OH - 200 г/л и CuSO4*5H2O - 1 г/л, в течение 72 часов, при комнатной температуре.

После удаления меди в травильном растворе образовывалась взвесь отдельных цилиндрических наностержней требуемого размера. Травильный раствор сливали, а взвесь промывали в дистиллированной воде и оставляли в воде для хранения и последующего использования. На данном этапе все манипуляции с наностержнями проводили при помощи магнита обернутого в полимерную пленку.

Пример 2

Получение цилиндрических магнитных наностержней из никеля с диаметром 70 нм и длиной 200 нм.

Использовали матрицы со следующими характеристиками: диаметр пор - 70 нм; плотность облучения - 7,8 * 10 см-2; толщина - 12 мкм.

Напряжения роста каждого слоя были такими же, как в примере 1. Заряд для осаждения медных слоев (100 нм) - 880 мКл; для никелевых слоев (200 нм) - 1120 мКл.

Для электроосаждения использовали электролит того же состава. Подготовка матрицы, последующее (после выращивания) удаление трековой мембраны и селективное травление меди происходили в режиме, описанном в примере 1.

Проведенные опыты по получению наностержней никеля с регулируемым аспектным отношением показывают промышленную применимость предлагаемого способа.

Похожие патенты RU2724264C1

название год авторы номер документа
Способ получения слоевых нанопроволок из ферромагнитных металлов с программируемой структурой и устройство для его осуществления 2021
  • Загорский Дмитрий Львович
  • Черкасов Дмитрий Александрович
  • Каневский Владимир Михайлович
RU2770919C1
Способ получения катализатора для окисления СО на основе медных нанопроволок 2022
  • Панов Дмитрий Вячеславович
  • Бычков Виктор Юрьевич
  • Тюленин Юрий Петрович
  • Загорский Дмитрий Львович
  • Муслимов Арсен Эмирбегович
RU2787291C1
Многослойные магниторезистивные нанопроволоки 2016
  • Труханов Алексей Валентинович
  • Труханов Сергей Валентинович
  • Костишин Владимир Григорьевич
  • Панина Лариса Владимировна
  • Читанов Денис Николаевич
RU2650658C1
Способ получения многослойных нанопроволок, состоящих из чередующихся слоев меди и сплава никель-медь 2021
  • Кругликов Сергей Сергеевич
  • Ерохина Наталья Сергеевна
  • Загорский Дмитрий Львович
  • Долуденко Илья Михайлович
  • Кругликова Елена Сергеевна
  • Винокуров Евгений Геннадьевич
  • Барботина Наталья Николаевна
  • Пшеничкина Татьяна Владимировна
RU2774669C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ РЕПЛИК КОНИЧЕСКОЙ ФОРМЫ НА ОСНОВЕ ПОЛИМЕРНЫХ ШАБЛОНОВ 2011
  • Бедин Сергей Александрович
  • Апель Павел Юрьевич
  • Загорский Дмитрий Львович
RU2497747C2
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ ПЕРЕД ГАЛЬВАНИЧЕСКИМ МЕДНЕНИЕМ 2013
  • Ревазов Владимир Владимирович
  • Давлатьян Татьяна Арутюновна
  • Конарев Александр Андреевич
  • Круглов Виталий Сергеевич
  • Новикова Дарья Олеговна
  • Шавкин Сергей Викторович
  • Шиков Александр Константинович
RU2549037C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПОРИСТОГО ГУБЧАТОГО МЕТАЛЛА 1993
  • Трясцын И.П.
RU2048610C1
Способ получения катализатора для гидрирования этилена на основе кобальтовых нанопроволок 2023
  • Панов Дмитрий Вячеславович
  • Бычков Виктор Юрьевич
  • Тюленин Юрий Петрович
  • Загорский Дмитрий Львович
  • Каневский Владимир Михайлович
RU2820518C1
Твердотельный источник электромагнитного излучения и способ его изготовления 2019
  • Шаталов Александр Сергеевич
  • Загорский Дмитрий Львович
  • Чигарев Сергей Григорьевич
  • Дюжиков Игорь Николаевич
RU2715892C1
МНОГОСЛОЙНЫЙ ЭЛЕКТРОМАГНИТНЫЙ ЭКРАН ДЛЯ ЗАЩИТЫ ФОТОЭЛЕКТРОННЫХ УМНОЖИТЕЛЕЙ И СПОСОБ ЕГО НАНЕСЕНИЯ 2011
  • Дмитренко Валерий Васильевич
  • Батищев Алексей Григорьевич
  • Наумов Петр Юрьевич
  • Грабчиков Сергей Степанович
  • Сосновская Людмила Борисовна
  • Шарапа Татьяна Евгеньевна
RU2474890C1

Иллюстрации к изобретению RU 2 724 264 C1

Реферат патента 2020 года Способ получения наностержней никеля с регулируемым аспектным отношением

Изобретение относится к области металлургии, в частности к способам получения никелевых наностержней цилиндрической формы с заданным аспектным отношением. Способ включает изготовление трековой полимерной матрицы, имеющей сквозные каналы-поры, на одну из сторон которой наносят слой меди с последующим наращиванием слоя до толщины 3-7 мкм в гальванической ванне с медным купоросом, приготовление гальванической ванны из смеси Н3ВО3 - 25-35 г/л; CuSO4×5H2O - 4-8 г/л; NiSO4×7H2O - 160-220 г/л при соотношении солей никеля и меди в диапазоне от 20:1 до 30:1, заполнение пор матрицы чередующимися слоями меди и никеля путем осаждения металлов в гальванической ванне из смеси, при этом циклически изменяют напряжение 0,7 В и 1,8 В для осаждения по отдельности слоев меди и никеля, после заполнения пор слоями меди и никеля трековую полимерную матрицу растворяют в NaOH с концентрацией от 220 г/л до 260 г/л при температуре от 60 до 80°С. Полученные нанопроволоки промывают, а затем растворяют слой меди подложки и одновременно вытравливают из нанопроволок слои меди в растворе NH4OH (150-200 г/л) и CuSO4×5H2O (1 г/л) при комнатной температуре, полученную взвесь из слоев никеля, образующих никелевые стержни, из травильного раствора переносят в воду с помощью магнита. 1 ил., 2 пр.

Формула изобретения RU 2 724 264 C1

Способ получения наностержней никеля с регулируемым аспектным отношением, включающий изготовление трековой полимерной матрицы, имеющей сквозные каналы-поры, приготовление электролита из смеси водных растворов солей никеля и меди, создание на поверхности матрицы слоя меди, заполнение пор матрицы чередующимися слоями меди и никеля путем их гальванического осаждения, отделение полученных длинных стержней из чередующихся слоев никеля и меди, образующих нанопроволоки, из пор полимерной матрицы, отличающийся тем, что на одну из сторон матрицы наносят используемый в качестве подложки слой меди путем предварительного вакуумно-термического напыления с последующим наращиванием слоя меди до толщины 3-7 мкм в гальванической ванне с медным купоросом, затем матрицу, одна из сторон которой покрыта слоем меди, погружают в гальваническую ванну, содержащую смесь электролитов солей Н3ВО3 - 25-35 г/л; CuSO4×5H2O - 4-8 г/л; NiSO4×7H2O - 160-220 г/л при соотношении солей никеля и меди в диапазоне от 20:1 до 30:1, циклически изменяют напряжение 0,7 В и 1,8 В для осаждения по отдельности слоев меди и никеля, при этом длительность подачи каждого из напряжений определяется величиной протекшего заряда, которую устанавливают опытным путем в зависимости от площади образца, плотности пор полимерной матрицы, осаждаемого материала и толщины слоя, после заполнения пор слоями меди и никеля трековую полимерную матрицу растворяют в растворе NaOH с концентрацией от 220 г/л до 260 г/л при температурах в интервалах от 60 до 80°С, промывают полученные нанопроволоки, состоящие из чередующихся слоев меди и никеля на медной подложке, а затем растворяют слой меди подложки и одновременно вытравливают из нанопроволок слои меди в растворе NH4OH (150-200 г/л) и CuSO4×5H2O (1 г/л) при комнатной температуре, полученную взвесь из слоев никеля, образующих никелевые наностержни, из травильного раствора переносят в воду с помощью магнита.

Документы, цитированные в отчете о поиске Патент 2020 года RU2724264C1

CN 105543890 A, 04.05.2016
US 4416743 A1, 22.11.1983
СПОСОБ КОНТРОЛЯ ИЗЛОЖНИЦЫ КРИСТАЛЛИЗАТОРА ВАКУУМНОЙ ДУГОВОЙ ПЕЧИ 2005
  • Альтман Петр Семенович
RU2289635C1
Водяные часы 1929
  • Попов Д.И.
SU19142A1
Многослойные магниторезистивные нанопроволоки 2016
  • Труханов Алексей Валентинович
  • Труханов Сергей Валентинович
  • Костишин Владимир Григорьевич
  • Панина Лариса Владимировна
  • Читанов Денис Николаевич
RU2650658C1

RU 2 724 264 C1

Авторы

Долуденко Илья Михайлович

Загорский Дмитрий Львович

Трушина Дарья Борисовна

Бурмистров Иван Андреевич

Даты

2020-06-22Публикация

2020-02-04Подача