Предлагаемое изобретение относится к области обработки радиолокационных сигналов и может быть использовано в бортовой радиолокационной станции (БРЛС) самолета для одновременного формирования при сопровождении летательных аппаратов пары достоверных оценок их функционального назначения (ФН) по принципу «ведущий-ведомый» и радиальных функционально-связанных координат (ФСК) взаимного перемещения этих летательных аппаратов (ЛА) и самолета – носителя БРЛС.
Известен способ распознавания ФН самолетов пары по принципу «ведущий-ведомый», летящих в сомкнутом боевом порядке (БП) [1], заключающийся в том, что сигнал, отражённый от самолетов пары, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье (БПФ) и преобразуется в амплитудно-частотный спектр, определяются отсчёты доплеровских частот соответствующие отражениям сигнала от планеров самолетов, c амплитудами спектральных составляющих спектра сигнала превышающими заданный порог, которые поступают на вход двух фильтров сопровождения пары самолетов, различающихся наборами параметров используемых математических моделей (ММ) динамики ФСК и функционирующих в соответствии с процедурой многомерной линейной дискретной калмановской фильтрации [1]
; (1)
; (2)
где
k = 0,1, …, К, …, – номер такта работы фильтра;
Ф(k) – переходная матрица состояния;
Q(k+1) и R(k+1) – КМ шумов возбуждения и наблюдения соответственно;
S(k+1) – матрица весовых коэффициентов;
I - единичная матрица;
Н(k+1) – матрица наблюдения;
Y(k) – вектор наблюдения;
Z(k+1) – матрица невязок измерения;
Ψ(k+1) – матрица априорных ошибок фильтрации;
"-1" – операция вычисления обратной матрицы;
"т" – операция транспонирования матрицы,
основанной на априорных данных в виде ММ линейной динамики радиальных ФСК взаимного перемещения самолетов пары и истребителя – носителя БРЛС
и ММ их измерений в БРЛС
где
в каждом фильтре определяется апостериорная оценка
на основе ММ (7) динамики ФСК, включающих радиальные флюктуационные составляющие скоростей и ускорений летательных аппаратов пары, в непрерывном времени
где ΔVi(t) и ΔV0i – флюктуационная составляющая скорости первого (i = 1) и второго (i = 2) самолетов и ее начальное значение соответственно;
аi(t) и а0i – флюктуационная составляющая ускорения первого (i = 1) и второго (i = 2) самолетов и ее начальное значение соответственно;
αj, βj, σ2j – параметры модели полета самолетов пары, определяющие их ФН в группе и вычисляемые по формулам
αj = 1/τj; βj = (2π fj)2; σ2j = σ2vj (α2j + βj);
τj, fj и σvj – соответственно время корреляции, частота и среднеквадратическое отклонение (СКО) скоростных флюктуаций первого (j = 1) и второго (j = 2) самолетов;
n(t) – формирующий белый гауссовский шум с нулевым математическим ожиданием (МО) и единичной интенсивностью,
из возможных вариантов ФН самолетов пары идентифицируется тот, которому соответствуют параметры ММ, используемой в фильтре, дающем наименьшую обобщенную дисперсию (9) ошибок оценивания, найденная оценка варианта ФН самолетов пары и оценки радиальных ФСК взаимного перемещения этих ВЦ и истребителя – носителя БРЛС, выдаваемые фильтром с наименьшей обобщенной дисперсией, подаются на выход канала сопровождения пары самолетов в БРЛС.
Недостатком данного способа распознавания функционального назначения самолетов пары является низкая достоверность оценок радиальных ФСК взаимного перемещения этих самолетов и носителя БРЛС, и варианта их ФН в следствие:
1. Не оптимальности, определяемых на его основе оценок ФСК, так как они находятся при условии справедливости гипотезы о фактическом варианте ФН самолетов пары, которая носит вероятностный характер, а значит, оценки являются условно-оптимальными.
2. Отсутствия возможности комплексирования информации БРЛС, измеряющей ФСК, и индикатора варианта ФН самолетов пары.
3. Отсутствия возможности учитывать априорные данные о смене вариантов ФН самолетов пары.
Технической задачей изобретения является повышение достоверности распознавания ФН летательных аппаратов пары и оценки радиальных скоростей сближения этих ВЦ с самолетом – носителем БРЛС путем приближения получаемых оценок к их оптимальным значениям за счет комплексирования информации БРЛС и индикатора варианта ФН летательных аппаратов пары, учета априорных данных о смене этих вариантов и адаптации фильтра к ней.
Для решения технической задачи в способе распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый» [1], летящих в сомкнутом БП, заключающемся в том, что сигнал, отражённый от летательных аппаратов пары, подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр, определяются отсчёты доплеровских частот соответствующие отражениям сигнала от планеров летательных аппаратов, c амплитудами спектральных составляющих спектра сигнала превышающими заданный порог, которые дополнительно поступают на вход многоканального фильтра совместного сопровождения летательных аппаратов пары и распознавания варианта их ФН, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы
основанной на априорных данных в виде ММ системы «пара летательных аппаратов – БРЛС – индикатор» со случайной скачкообразной структурой (ССС), включающей модель линейной динамики радиальных ФСК взаимного перемещения летательных аппаратов пары и самолета – носителя БРЛС
модель измерений этих фазовых координат в БРЛС
модель смены варианта ФН летательных аппаратов пары
модель индикатора варианта ФН летательных аппаратов пары
модель неуправляемых случайных возмущений и помех
при начальных условиях
где
определяется оценка
модель представлена в процедуре (14)–(26) матрицами
Новыми признаками, обладающими существенными отличиями, являются:
1. Применение многоканального фильтра совместных сопровождения летательных аппаратов пары и распознавания варианта их ФН, функционирующего в соответствии с процедурой (14)–(26) квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы вместо двух фильтров сопровождения пары летательных аппаратов, функционирующих в соответствии с процедурой (1)–(6) многомерной линейной дискретной калмановской фильтрации.
2. Комплексирование в (17) информации БРЛС, измеряющей ФСК, и индикатора варианта ФН летательных аппаратов пары с моделью (30).
3. Учет априорных данных о смене варианта ФН летательных аппаратов пары в виде условных вероятностей переходов (29).
4. Коррекция оценок (15), (16), (25), (26) ФСК, полученных на основе модели (27) и измерений (28), по оцененным вероятностям (17) полета пары летательных аппаратов с соответствующим вариантом ФН и априорным данным (29) о смене варианта ФН летательных аппаратов пары (адаптация фильтра к различным вариантам ФН летательных аппаратов пары).
5. Прогнозирование (14) вероятностей
6. Прогнозирование (15) на один шаг дискретности вперед условных математических ожиданий
7. Прогнозирование (16) на один шаг дискретности вперед условных КМ
8. Оценка (17) апостериорных вероятностей
9. Оценка (18) условных апостериорных математических ожиданий
10. Оценка (19) условных апостериорных КМ
11. Идентификация (24) такого
12. Нахождение (25) безусловной оценки
13. Нахождение (26) безусловной КМ
Данные признаки являются существенными и в известных технических решениях не обнаружены.
Применение всех новых существенных признаков позволит достоверно распознать вариант ФН летательных аппаратов пары с одновременным формированием достоверных безусловных оценок радиальных ФСК взаимного перемещения этих ЛА и самолета– носителя БРЛС путем приближения получаемых оценок к их оптимальным значениям за счет комплексирования информации БРЛС и индикатора варианта ФН летательных аппаратов пары, учета априорных данных о смене этих вариантов и адаптации фильтра к ней.
На фиг. приведена блок-схема, поясняющая реализацию предлагаемого способа распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый».
Способ распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый» осуществляется следующим образом.
На вход известного блока 1 БПФ, используемого в [3], на промежуточной частоте с выхода приёмника БРЛС поступает сигнал S(t), отражённый от летательных аппаратов пары, который подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр, в котором присутствуют составляющие обусловленные отражениями сигнала от планеров сопровождаемых ЛА.
В известном формирователе 2 измерения, используемом в [3], во-первых, определяются отсчёты доплеровских частот
В результате на выходе блока 2 формируется измерение
При этом в фильтре 9 осуществляется комплексирование информации БРЛС и индикатора варианта ФН летательных аппаратов пары, заключающееся в совместном использовании двух независимых источников информации (БРЛС и индикатора варианта ФН). На основе выходных сигналов
Особенность реализуемого комплексирования состоит в следующем: объект наблюдения (пара летательных аппаратов) характеризуется составным вектором
На основании (17), (20) видно, что коррекция спрогнозированных вероятностей полета пары летательных аппаратов с соответствующим ФН осуществляется как по показаниям индикатора ФН летательных аппаратов пары, так и по результатам измерений БРЛС, причем совместное использование двух независимых источников информации позволяет улучшить точность оценивания этих вероятностей, в сравнении с использованием только БРЛС или только индикатора.
Как следует из (18), (25) оценка ФСК формируется как с учетом измерений БРЛС через
Сформированные на выходе многоканального фильтра 9 оценки
Результаты сравнительного моделирования предлагаемого способа распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый» на основе нового многоканального фильтра совместных сопровождения летательных аппаратов пары и распознавания варианта их ФН, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, и известного способа распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый», летящих в сомкнутом БП [1] на основе процедуры многомерной линейной дискретной калмановской фильтрации свидетельствуют с доверительной вероятностью 0,95 о снижении СКО ошибки фильтрации на 13% и о повышении вероятности правильного распознавания варианта ФН летательных аппаратов пары на 10%.
Таким образом, применение предлагаемого способа позволит повысить достоверность распознавания варианта ФН летательных аппаратов пары и оценки радиальных ФСК взаимного перемещения этих ЛА и самолета – носителя БРЛС путем приближения получаемых оценок к их оптимальным значениям за счет комплексирования информации БРЛС и индикатора варианта ФН летательных аппаратов пары, учета априорных данных о смене этих вариантов и адаптации фильтра к ней.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Алгоритм совместного траекторного сопровождения-распознавания функционального назначения самолетов, летящих в сомкнутом боевом порядке / А. В. Богданов, В. А. Голубенко, А. И. Княжев, А. А. Филонов // Системы радиоуправления. – 2018. – № 5. – С. 169–174. (прототип)
2. Бухалев, В. А. Оптимальное сглаживание в системах со случайной скачкообразной структурой / В. А. Бухалев. М.: ФИЗМАТЛИТ, 2013, страницы 115, 116, 117.
3. Богданов А.В., Васильев О.В., Докучаев Я.С. Способ сопровождения воздушной цели из класса «самолёт с турбореактивным двигателем» при воздействии уводящих по дальности и скорости помех. Патент на изобретение № 2665031, 2018.
название | год | авторы | номер документа |
---|---|---|---|
Способ распознавания варианта наведения подвижного объекта на один из летательных аппаратов группы | 2019 |
|
RU2713212C1 |
Способ сопровождения воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех | 2020 |
|
RU2764781C1 |
Способ комплексирования информации радиолокационной станции и радиолокационных головок самонаведения ракет, пущенных носителем по воздушной цели при воздействии уводящих по дальности и скорости помех | 2021 |
|
RU2765145C1 |
Способ комплексирования информации при определении направления беспилотного летательного аппарата на воздушный объект и величины предполагаемого промаха | 2022 |
|
RU2794733C1 |
Способ сопровождения в радиолокационной станции воздушной цели из класса "самолёт с турбореактивным двигателем" при воздействии уводящих по дальности и скорости помех | 2019 |
|
RU2713635C1 |
Способ сопровождения крылатой ракеты при огибании рельефа местности в различных тактических ситуациях | 2021 |
|
RU2760951C1 |
Способ определения мгновенного положения точки промаха беспилотного летательного аппарата по информации угломерного канала | 2019 |
|
RU2721623C1 |
СПОСОБ ДОСТАВКИ ПОЛЕЗНОЙ НАГРУЗКИ НА ВОЗДУШНЫЙ ОБЪЕКТ | 2023 |
|
RU2804765C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ ПОДВИЖНОГО ОБЪЕКТА | 2014 |
|
RU2555496C1 |
СПОСОБ ТРАССОВОГО СОПРОВОЖДЕНИЯ ВОЗДУШНЫХ МАНЕВРИРУЮЩИХ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ ПО ПЕЛЕНГОВОЙ ИНФОРМАЦИИ ОТ ОДНОПОЗИЦИОННОЙ СИСТЕМЫ РАДИОТЕХНИЧЕСКОЙ РАЗВЕДКИ ВОЗДУШНОГО БАЗИРОВАНИЯ | 2017 |
|
RU2660498C1 |
Изобретение относится к области обработки радиолокационных сигналов и может быть использовано в бортовой радиолокационной станции (БРЛС) самолета для одновременного формирования при сопровождении летательных аппаратов пары достоверных оценок их функционального назначения (ФН) по принципу «ведущий-ведомый» и радиальных функционально-связанных координат (ФСК) взаимного перемещения этих летательных аппаратов и самолета – носителя БРЛС. Технический результат – повышение достоверности оценивания варианта ФН летательных аппаратов пары и радиальных скоростей их сближения с самолетом – носителем БРЛС. Способ заключается в распознавании ФН летательных аппаратов пары с одновременным формированием достоверных безусловных оценок радиальных скоростей их сближения с самолетом – носителем БРЛС за счет комплексирования информации БРЛС и индикатора варианта ФН летательных аппаратов пары, учета априорных данных о смене этих вариантов и адаптации фильтра к ней на основе узкополосной доплеровской фильтрации сигнала, отражённого от летательных аппаратов пары, летящих в сомкнутом боевом порядке (БП), с использованием процедуры быстрого преобразования Фурье, формирования отсчетов доплеровских частот, обусловленных отражениями сигнала от планеров летательных аппаратов, обработки сформированных отсчетов доплеровских частот и выходных показаний индикатора в многоканальном фильтре совместных сопровождения летательных аппаратов пары и распознавания варианта их ФН, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, работающего на основе априорных данных в виде математической модели системы «пара летательных аппаратов – БРЛС – индикатор» со случайной скачкообразной структурой, и на выходе которого формируются оценки варианта ФН летательных аппаратов пары, безусловных математического ожидания ФСК и ковариационной матрицы ошибок их оценивания. 1 ил.
Способ распознавания функционального назначения летательных аппаратов пары по принципу «ведущий-ведомый», заключающийся в том, что сигнал, отражённый от летательных аппаратов пары, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье и преобразуется в амплитудно-частотный спектр, определяются отсчёты доплеровских частот, соответствующие отражениям сигнала от планеров летательных аппаратов, c амплитудами спектральных составляющих спектра сигнала, превышающими заданный порог, отличающийся тем, что сформированные отсчеты доплеровских частот поступают на вход многоканального фильтра совместного сопровождения летательных аппаратов пары и распознавания варианта их функционального назначения, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, основанной на априорных данных в виде математической модели системы «пара летательных аппаратов – радиолокационная станция – индикатор» со случайной скачкообразной структурой, включающей модель линейной динамики радиальных функционально-связанных координат взаимного перемещения летательных аппаратов пары и самолета – носителя радиолокационной станции, модель измерений этих фазовых координат в радиолокационной станции, модель смены варианта функционального назначения летательных аппаратов пары, модель индикатора варианта функционального назначения летательных аппаратов пары, модель неуправляемых случайных возмущений и помех, при начальных условиях, осуществляется совместное оценивание функционально-связанных координат и варианта функционального назначения летательных аппаратов пары на основе метода двухмоментной параметрической аппроксимации неизвестных условных плотностей вероятности фазовых координат при фиксированной структуре системы с помощью нескольких каналов фильтрации, различающихся положенной в их основу гипотезой о варианте функционального назначения летательных аппаратов пары, при этом в каждом канале фильтрации на основе априорных данных о смене вариантов функционального назначения летательных аппаратов пары, представленных соответственно начальными и переходными вероятностями цепи Маркова, прогнозируются вероятности полета пары летательных аппаратов с каждым вариантом функционального назначения на один шаг дискретности вперед, с учетом найденных вероятностей, на основе априорных данных о смене вариантов функционального назначения летательных аппаратов пары и альтернативных моделей динамики функционально-связанных координат взаимного перемещения летательных аппаратов пары и носителя радиолокационной станции прогнозируются на один шаг дискретности вперед условные математические ожидания функционально-связанных координат при фиксированном варианте функционального назначения летательных аппаратов пары, с учетом найденных вероятностей и математических ожиданий, на основе априорных данных о смене вариантов функционального назначения летательных аппаратов пары и альтернативных моделей динамики функционально-связанных координат взаимного перемещения летательных аппаратов пары и носителя радиолокационной станции прогнозируются на один шаг дискретности вперед условные ковариационные матрицы ошибок оценивания функционально-связанных координат при фиксированном варианте функционального назначения летательных аппаратов пары, по степени согласованности спрогнозированных вероятностей, математических ожиданий функционально-связанных координат и ковариационных матриц ошибок их оценивания с результатами измерений радиолокационной станции и показаниями индикатора варианта функционального назначения летательных аппаратов пары осуществляется оценка апостериорных вероятностей полета пары летательных аппаратов с каждым вариантом функционального назначения, на основе спрогнозированных математических ожиданий и ковариационных матриц ошибок прогноза с учетом результатов измерения радиолокационной станции находятся условные апостериорные математические ожидания функционально-связанных координат при фиксированном варианте функционального назначения летательных аппаратов пары, на основе спрогнозированных математических ожиданий и ковариационных матриц ошибок прогноза с учетом результатов измерения радиолокационной станции находятся условные апостериорные ковариационные матрицы ошибок оценивания функционально-связанных координат при фиксированном варианте функционального назначения летательных аппаратов пары, на выходе каналов фильтрации из возможных вариантов функционального назначения летательных аппаратов пары выбирается тот, для которого найденная апостериорная вероятность окажется больше, безусловная по отношению к вариантам функционального назначения летательных аппаратов пары оценка функционально-связанных координат вычисляется на основе апостериорных вероятностей полета пары летательных аппаратов с каждым вариантом функционального назначения и условных апостериорных оценок функционально-связанных координат, как безусловное математическое ожидание, с учетом найденных апостериорных вероятностей полета пары летательных аппаратов с каждым вариантом функционального назначения, условных математических ожиданий функционально-связанных координат, условных ковариационных матриц ошибок их оценивания и безусловных оценок функционально-связанных координат находится безусловная по отношению к вариантам функционального назначения летательных аппаратов пары ковариационная матрица ошибок оценивания функционально-связанных координат.
А | |||
В | |||
Богданов и др | |||
Алгоритм совместного оценивания функционально связанных координат и состояния групповой воздушной цели на основе линейной модели с марковской структурой, Журнал сибирского федерального университета: серия техника и технологии, Сибирский федеральный университет, Том 12, N1, 2019, поступила в редакцию 27.05.2018 | |||
Способ сопровождения в радиолокационной станции групповой воздушной цели из класса "самолёты с турбореактивными двигателями" при воздействии уводящих по скорости помех | 2016 |
|
RU2617110C1 |
Авторы
Даты
2020-07-16—Публикация
2019-08-01—Подача