Изобретение относится к области биотехнологий, в частности к устройствам и способам для создания тканеинженерных конструкций, пригодных для выращивания клеток млекопитающих, и может найти применение в тканевой инженерии и регенеративной медицине.
Трехмерное (3D) культивирование клеток получило широкое распространение в клеточной биологии. Это обусловлено множеством несомненных преимуществ по сравнению с обычным, монослойным (2D) культивированием клеток. 3D культивирование обеспечивает лучшее взаимодействие клетка-клетка, клетка-внеклеточный матрикс (ВКМ) и образование структуры клеточной популяции, схоже с архитектурой внутренних органов. Все преимущества 3D культивирования обеспечивают получение более полной и достоверной информации о физиологии клеток и прогнозировании их жизнедеятельности in vivo. /1, Edmondson R., Broglie J.J. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors // ASSAY and Drug Development Technologies. - 2014. - №12(4)./.
Наиболее частыми материалами, используемыми для получения 3D тканеинженерных конструкций, являются коллаген, желатин, хитозан, полилактид, гликолевая кислота, гликозаминогликаны. Все способы для получения тканеинженерных конструкций подразумевают формирование устойчивой, структурированной, объемной, пористой конструкции, к которой будет возможна адгезия клеток 12, Do A., Khorsand В. 3D Printing of Scaffolds for Tissue Regeneration Applications // Advanced Healthcare Materials. - 2015. - №4(12)./.
Существует множество устройств и способов получения 3D тканеинженерных конструкций для культивирования клеток. Не прямым аналогом является 3D-биопринтинг, а именно струйная лазерная и экструзионная печать. Данные методы предоставляют возможность создавать органоподобные матриксы, модифицировать скаффолды с помощью различных лекарственных веществ, а также печать 3D-скаффолдов вместе с клетками. Основной проблемой данного метода являются ограниченные условия печати, такие как вязкость, температура, не большие объемы печати, а также время печати и стоимость конечного продукта./3, Huang Y., Zhang X.F. 3D bioprinting and the current applications in tissue engineering // Biotechnology Journal. - 2017. - №12(8)./.
Ближайшим аналогом является способ получения внеклеточного матрикса с помощью хлорида натрия. Желатин (2,5 г) растворяли в дважды деионизированной воде (7,5 г) при 50°С в концентрации 25%. Кристаллы хлорида натрия (средний размер частиц = 300-500 мкм от просеивания) добавляли в весовых соотношениях (100-175 г) в раствор желатина. Раствор, содержащий кристаллы NaCl, заливали в тефлоновую форму (толщина = 2 мм), равномерно распределяли и затем сушили в вакуумной печи при 50°С в течение 24 часов для удаления воды. /4, Lee S.B., Kim Y.H., Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. // Biomaterials. - 2005. - №26(14)./.
Данный способ обладает рядом недостатков. При создании данных скаффолдов используется не выгодное соотношение соли и желатина, из-за этого большая часть соли получается не использованной. Так же для данной методики необходимо наличие дополнительного оборудования.
Техническая проблема, решаемая данным изобретением, состоит в создании устройства, которое позволяет получать внеклеточный матрикс необходимых размеров, толщины и пористости, с минимальной тратой ресурсов.
Сущность изобретения заключается в том, что устройство для изготовления 3D тканеинженерных конструкций для культивации клеток из пластика состоит из корпуса, на прямоугольном основании которого по трем сторонам расположены бортики высотой 0,3 см, и крышки, размер которой совпадает с размером основания корпуса, с возможностью их соединения при помощи струбцин, с образованием щели по одной из сторон, не имеющей бортика.
А в способе изготовления 3D тканеинженерных конструкций для культивации клеток, включающем смешивание соли NaCl с раствором желатина, соль смешивали с 20% раствором желатина в дистиллированной воде, в весовом соотношении 1:7, затем оставляли инкубировать для пропитки соли в течение суток, при 37°С, после чего полученный скаффолд помещали в емкость с 2,5% глутаровым альдегидом и инкубировали для фиксации в течение 5 минут, а затем промывали деионизованной водой, в течение 2 суток.
Устройство представлено на фиг. 1 - общий вид сверху, фиг. 2 - общий вид спереди, фиг. 3 - устройство в сборе, фиг. 4, 5 - Гистологическое изображение образца, фиг. 6, 7 - Исследования образца с помощью сканирующей электронной микроскопии.
Устройство состоит из прямоугольной пластиковой крышки 1, корпуса 2, выполненного также из пластика и представляющего собой основание в виде плоского прямоугольника с бортиками по трем сторонам. Размеры крышки и основания одинаковы, высота бортиков составляет 0,3 см. Фиксация крышки на корпусе осуществляется с помощью струбцины 3 маленького размера.
Работа устройства осуществляется следующим образом. В корпус 2 насыпается соль хлорида натрия, которая фиксируется крышкой, прижатой к корпусу струбцинами 3, с образованием щели по стороне без бортика. Устройство переворачивается щелью вверх, в которую заливается 20% раствор желатина с дистиллированной водой, в весовом соотношении соль-раствор желатина 1:7. Вещества оставляют инкубировать для хорошего смешивания в течение суток, при 37°С. Затем снимают крышку и помещают получившийся скаффолд в емкость с 2,5% глутаровым альдегидом и инкубируют для фиксации в течение 5 минут. Затем промывают полученный скаффолд деионизованной водой в течение 2 суток. Таким образом, использован наливной способ изготовления тканеинженерных конструкций.
Технический результат использования данного изобретения заключается в том, что оно позволяет создавать внеклеточный матрикс необходимого размера, пористости, который в дальнейшем можно будет использовать в исследованиях регенерационной медицины. Изобретение позволяет создавать внеклеточный матрикс с минимальными затратами, без использования сложного и дорогостоящего оборудования. Были проведены гистологические исследования, в ходе которых образцы внеклеточного матрикса были окрашены с помощью гематоксилина и эозина. На образцах видно высокую пористость матрикса (см. Фиг. 4, 5). При анализе полученных образцов с помощью сканирующего электронного микроскопа так же видно высокую пористость матрикса (см. Фиг. 6, 7).
название | год | авторы | номер документа |
---|---|---|---|
Способ получения биочернил, обеспечивающих высокий уровень пористости в тканеинженерных конструкциях | 2021 |
|
RU2772734C2 |
Способ получения органоидов мозга (нейросфер) на скаффолдах из высокоориентированных нановолокон | 2021 |
|
RU2797859C1 |
Трансплантат - тканеинженерная надхрящница для восстановления хряща субъекта | 2023 |
|
RU2822238C1 |
СПОСОБ ФАБРИКАЦИИ КОНСТРУКТОВ ИЗ ФОСФАТОВ КАЛЬЦИЯ | 2019 |
|
RU2725111C1 |
БИОПОЛИМЕРНЫЙ МАТЕРИАЛ ДЛЯ КЛЕТОЧНО-ИНЖЕНЕРНЫХ И/ИЛИ ТКАНЕИНЖЕНЕРНЫХ КОНСТРУКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2021 |
|
RU2774947C1 |
Способ получения трансплантата - тканеинженерной надхрящницы на основе клеточных сфероидов | 2022 |
|
RU2807692C2 |
СПОСОБ ПОЛУЧЕНИЯ МИНЕРАЛИЗОВАННЫХ КОМПОЗИТНЫХ МИКРОСКАФФОЛДОВ ДЛЯ РЕГЕНЕРАЦИИ КОСТНОЙ ТКАНИ | 2016 |
|
RU2660558C2 |
СПОСОБ УЛУЧШЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ И ПОВЫШЕНИЯ ПОРИСТОСТИ ЖЕЛАТИНА ПУТЕМ МОДИФИКАЦИИ ЕГО РИБОЗОЙ И ХЛОРИДОМ НАТРИЯ | 2021 |
|
RU2767252C1 |
СПОСОБ ФОРМИРОВАНИЯ БИОРЕЗОРБИРУЕМЫХ ФИБРОИНОВЫХ ПЛЕНОК С ИСПОЛЬЗОВАНИЕМ МЕТАКРИЛИРОВАННОГО ЖЕЛАТИНА | 2016 |
|
RU2645200C1 |
Способ создания тканеинженерных конструкций методом биопечати биочернилами для регенерации хрящевой ткани в условиях организма | 2021 |
|
RU2770558C2 |
Изобретение относится к области биотехнологии, а именно к устройству для изготовления скаффолдов. Устройство состоит из корпуса, на прямоугольном основании которого по трем сторонам расположены бортики высотой 0,3 см, и крышки, размер которой совпадает с размером основания корпуса, с возможностью их соединения при помощи струбцин, с образованием щели по одной из сторон, не имеющей бортика. Изобретение позволяет расширить арсенал технических средств. 7 ил.
Устройство для изготовления скаффолдов, состоящее из корпуса, на прямоугольном основании которого по трем сторонам расположены бортики высотой 0,3 см, и крышки, размер которой совпадает с размером основания корпуса, с возможностью их соединения при помощи струбцин, с образованием щели по одной из сторон, не имеющей бортика.
3D БИОПЛАСТИЧЕСКИЙ МАТЕРИАЛ НА ОСНОВЕ ГИДРОКОЛЛОИДА ГИАЛУРОНОВОЙ КИСЛОТЫ | 2013 |
|
RU2565398C2 |
ВАХРУШЕВ И.В | |||
и др | |||
"Тканеинженерные конструкции для регенерации медицины на основе мезенхимальных клеток пульпы молочного зуба и полимерных матриксов нового поколения", Курский научно-практический вестник "Человек и его здоровье" | |||
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами | 1924 |
|
SU2017A1 |
US 7004284 B2, 28.02.2006. |
Авторы
Даты
2020-08-06—Публикация
2019-03-27—Подача