СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ИЗНОСОСТОЙКОГО СЛОЯ НА ОСНОВЕ АЛЮМИНИДОВ ТИТАНА НА ТИТАНЕ И ТИТАНОВОМ СПЛАВЕ Российский патент 2020 года по МПК B23K9/04 B23K103/18 

Описание патента на изобретение RU2731399C1

Изобретение относится к области сварочного производства и может быть использовано при получении жаростойких износостойких слоев на титане и титановом сплаве, работающих при повышенных температурах и в условиях абразивного износа.

Известен способ электродуговой наплавки на титан и титановые сплавы в среде защитных газов с применением присадочной проволоки из меди и медных сплавов (Способ наплавки интерметаллидных сплавов на основе системы титан-медь. RU №2670317 от 22 октября 2018 г). Этот способ позволяет получать покрытия на основе купридов титана на деталях из титана и титановых сплавов.

Недостатком этого способа является ограниченная жаростойкость и износостойкость купридов титана.

Известен также способ электродуговой наплавки на титан и титановые сплавы в среде защитных газов с применением присадочной проволоки из алюминия, который взят за прототип. (Способ наплавки на титан и титановые сплавы жаростойких и износостойких покрытий на основе алюминидов титана. RU №2699474 от 05 сентября 2019 г.). Этот способ позволяет формировать наплавленные покрытия на основе алюминидов титана с повышенной жаростойкостью и износостойкостью. Недостатком этого способа является формирования покрытий с высокой склонностью к образованию трещин, что снижает механические и эксплуатационные свойства наплавленного металла.

Техническим результатом изобретения является снижение склонности наплавленного металла к образованию трещин при наплавке и повышение его жаростойкости и износостойкости.

Сущность способа заключается в получении жаростойкого износостойкого слоя на основе алюминидов титана на титане и титановом сплаве, включающего проведение электродуговой наплавки неплавящимся электродом в инертных защитных газах с применением алюминиевой присадочной проволоки на режимах обеспечивающих получение наплавленного слоя с содержанием алюминия в пределах 5-25%. В отличие от прототипа при наплавке дополнительно используют циркониевую присадочную проволоку, при этом режим наплавки выбирают из условия обеспечения содержание циркония в наплавленном слое в пределах 3-15%.

Такая совокупность новых признаков с известными, позволяет снизить склонность наплавленного металла к образованию трещин при наплавке и повысить его жаростойкость и износостойкость.

Получение жаростойкого износостойкого слоя на основе алюминидов титана на титане и титановом сплаве проводят электродуговой наплавкой неплавящимся электродом в среде инертных защитных газов с применением двух присадочных проволок из алюминия и циркония. Наплавку проводят на режимах обеспечивающих получение наплавленного слоя с содержанием алюминия в пределах 5-25% и циркония в пределах 3-15%.

При содержании циркония менее 3% заметного повышения трещиноустойчивости, жаростойкости и износостойкости наплавленных слоев на основе алюминидов титана с содержанием алюминия в пределах 5-25% не наблюдается. При содержании циркония более 15% в наплавленных слоях на основе алюминидов титана с содержанием алюминия в пределах 5-25% склонность к образованию трещин увеличивается.

Примером применения предлагаемого способа является электродуговая наплавка на образец из титана размером 150×150×12 мм, марки ВТ1 неплавящимся электродом в среде аргона с применением присадочной проволоки СвА5 диаметром 1 мм и циркониевой присадочной проволоки R702 диаметром 1,2 мм. Наплавку проводят при силе тока 270А, скорости подачи алюминиевой проволоки 2 м/мин, скорости подачи циркониевой проволоки и скорости наплавки 0,15 м/мин. При таких режимах содержание алюминия составляет 15,6%, а циркония 8,3% относительная износостойкость при абразивном изнашивании повысилась при легировании цирконием на 20% и потеря массы при испытаниях на жаростойкость при 800°С в течение 1000 ч в 4-6 раз меньше, чем у титана марки ВТ 1-0. Трещин при наплавке на контролируем участке наплавленного валика длиной 150 мм наблюдалось, а при наплавке без дополнительного введения циркониевой проволоки на контролируемо участке наплавленного валика длиной 150 мм наблюдается более 3 поперечных трещин.

Предлагаемый способ обеспечивает технический эффект и может быть осуществлен с помощью известных в технике средств. Следовательно, он обладает промышленной применимостью.

Похожие патенты RU2731399C1

название год авторы номер документа
Способ получения жаростойкого износостойкого слоя на основе алюминидов титана на титане и титановом сплаве 2022
  • Ковтунов Александр Иванович
  • Хохлов Юрий Юрьевич
  • Бочкарев Александр Геннадьевич
RU2783836C1
Способ наплавки на титан и титановые сплавы жаростойких и износостойких покрытий на основе алюминидов титана 2019
  • Ковтунов Александр Иванович
  • Бочкарев Александр Геннадьевич
  • Гущин Антон Андреевич
  • Хохлов Юрий Юрьевич
RU2699474C1
СПОСОБ НАПЛАВКИ ИНТЕРМЕТАЛЛИДНЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ ТИТАН-МЕДЬ 2017
  • Ковтунов Александр Иванович
  • Острянко Алексей Михайлович
  • Бочкарев Александр Геннадьевич
RU2670317C1
Способ получения жаростойких, износостойких покрытий на основе алюминидов титана на поверхности изделий из титановых сплавов 2022
  • Ковтунов Александр Иванович
  • Хохлов Юрий Юрьевич
  • Никитин Дмитрий Николаевич
  • Вершинин Леонид Владиславович
  • Исаков Юрий Алексеевич
RU2775671C1
СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКИХ, ЖАРОСТОЙКИХ ПОКРЫТИЙ 2009
  • Ковтунов Александр Иванович
  • Чермашенцева Татьяна Владимировна
  • Мямин Сергей Владимирович
RU2414336C1
Способ наплавки алюминидов железа 2015
  • Ковтунов Александр Иванович
  • Семистенов Денис Александрович
  • Семистенова Татьяна Владимировна
  • Плахотный Денис Иванович
RU2627714C2
СПОСОБ ЭЛЕКТРОДУГОВОЙ НАПЛАВКИ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ 2006
  • Ковтунов Александр Иванович
  • Сидоров Владимир Петрович
  • Бородин Максим Николаевич
  • Чермашенцева Татьяна Владимировна
RU2327551C2
СПОСОБ НАПЛАВКИ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ 2009
  • Ковтунов Александр Иванович
  • Чермашенцева Татьяна Владимировна
  • Гладуняк Владимир Владимирович
RU2429954C2
ПОРОШКОВАЯ ПРОВОЛОКА 2018
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
  • Бородихин Сергей Александрович
  • Маталасова Арина Евгеньевна
  • Пономарев Иван Андреевич
RU2679374C1
СПОСОБ НАНЕСЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ОСНОВЕ АЛЮМИНИДА ЖЕЛЕЗА НА ПОВЕРХНОСТЬ ИЗДЕЛИЙ, РАБОТАЮЩИХ В УСЛОВИЯХ ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ КОРРОЗИИ 2021
  • Балин Александр Николаевич
  • Вишневский Анатолий Адольфович
  • Невежин Станислав Владимирович
  • Герасимов Андрей Сергеевич
  • Кашфуллин Артур Миннахматович
RU2772342C1

Реферат патента 2020 года СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ИЗНОСОСТОЙКОГО СЛОЯ НА ОСНОВЕ АЛЮМИНИДОВ ТИТАНА НА ТИТАНЕ И ТИТАНОВОМ СПЛАВЕ

Изобретение может быть использовано при нанесении жаростойких и износостойких слоев на титан и титановые сплавы, работающих при повышенных температурах и в условиях абразивного износа. Электродуговую наплавку проводят неплавящимся электродом в среде инертных защитных газов с применением двух присадочных проволок из алюминия и циркония. Режим наплавки выбирают из условия получения наплавленного слоя с содержанием алюминия в пределах 5-25% и циркония на уровне 3-15%. Указанное содержание алюминия и циркония при наплавке обеспечивает формирования структуры наплавленного металла на основе пересыщенного раствора алюминия в титане и интерметаллидной фазы Ti3Al, легированных цирконием. Легирование цирконием в указанных пределах обеспечивает снижение склонности наплавленного металла к образованию трещин, что способствует повышению механических и эксплуатационных свойств наплавленного металла.

Формула изобретения RU 2 731 399 C1

Способ получения жаростойкого износостойкого слоя на основе алюминидов титана на титане и титановом сплаве, включающий проведение электродуговой наплавки неплавящимся электродом в инертных защитных газах с применением алюминиевой присадочной проволоки на режимах, обеспечивающих получение наплавленного слоя с содержанием алюминия в пределах 5-25%, отличающийся тем, что при наплавке дополнительно используют циркониевую присадочную проволоку, при этом режим наплавки выбирают из условия обеспечения содержания циркония в наплавленном слое в пределах 3-15%.

Документы, цитированные в отчете о поиске Патент 2020 года RU2731399C1

Способ наплавки на титан и титановые сплавы жаростойких и износостойких покрытий на основе алюминидов титана 2019
  • Ковтунов Александр Иванович
  • Бочкарев Александр Геннадьевич
  • Гущин Антон Андреевич
  • Хохлов Юрий Юрьевич
RU2699474C1
СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКИХ, ЖАРОСТОЙКИХ ПОКРЫТИЙ 2009
  • Ковтунов Александр Иванович
  • Чермашенцева Татьяна Владимировна
  • Мямин Сергей Владимирович
RU2414336C1
Электромеханический тормоз для грузоподъемных кранов 1952
  • Гомелля С.П.
SU98165A1
СПОСОБ ФОРМИРОВАНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА ТИТАНОВЫХ СПЛАВАХ 1999
  • Вайсман А.Ф.(Ru)
  • Салимов Р.А.(Ru)
  • Голковский М.Г.(Ru)
  • Джун Чул О
  • Кванг Джун О
RU2164265C1
US 6347332 B1, 19.03.2002.

RU 2 731 399 C1

Авторы

Ковтун Александр Иванович

Бочкарев Александр Геннадьевич

Гущин Антон Андреевич

Хохлов Юрий Юрьевич

Даты

2020-09-02Публикация

2019-12-10Подача