Корпус роторно-поршневого двигателя внутреннего сгорания Российский патент 2020 года по МПК F01C21/06 F02B55/08 

Описание патента на изобретение RU2738156C1

Изобретение относится к области двигателестроения, а именно к роторно-поршневым двигателям внутреннего сгорания, и может быть использовано для теплоизоляции корпуса двигателя.

Известен корпус роторно-поршневого двигателя внутреннего сгорания с расположенными в нем впускным и выпускным каналами (авторское свидетельство СССР №639475, F02B 53/12, 1978 г. Бюллетень №47). Отсутствие теплоизоляции внутренней поверхности корпуса приводит к большому отводу тепла в систему охлаждения и уменьшению доли теплоты, преобразуемой в эффективную работу, и, как следствие, к снижению КПД двигателя и ухудшению его технико-экономических показателей, а также к увеличению содержания токсичных веществ в отработавших газах, вследствие неполноты сгорания топливовоздушной смеси.

Известен корпус роторно-поршневого двигателя внутреннего сгорания с расположенными в нем впускным и выпускным каналами и нанесенным на внутреннюю поверхность корпуса и выпускного канала корпуса роторно-поршневого двигателя теплоизоляционным покрытием, выполненным из композиционного материала, выполненного из пористого металла или керамического материала, например, окиси циркония (патент US №4021163, класс 418-83, 1977 г.). Известное техническое решение не обеспечивает достаточного уровня снижения количество тепла, теряемого в систему охлаждения вследствие недостаточно высоких теплоизоляционных параметров материала покрытия и его низкую стойкость к термоударам (резком повышении температуры). Кроме того, используемые покрытия имеют недостаточно высокую прочность сцепления (адгезию) с основой, предварительно нанесенной на внутреннюю поверхность корпуса, в связи с чем требуется нанесение дополнительных промежуточных слоев между теплозащитным покрытием и основой.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому эффекту является корпус роторно-поршневого двигателя с расположенными в нем впускным и выпускным каналами и нанесенным на внутреннюю поверхность корпуса и выпускного канала корпуса роторно-поршневого двигателя теплоизоляционным покрытием, выполненным из композиционного материала (Патент РФ на полезную модель RU №5823, F01C 2106, 1998 г.). В известном техническом решении покрытие внутренней поверхности корпуса выполнено из композиционного материала, состоящего из твердых включений фазы α-Аl2О3, распределенной в матрице из γ-Аl2О3 и соединениях муллита 3Аl2О3 * 2SiO2. Существенным недостатком известного технического решения является пониженная прочность при термоударе вследствие недостаточного сцепления (адгезии) теплоизоляционного материала с основой, что обусловлено различием в коэффициентах термического расширения, а также недостаточная эффективность теплозащитных свойств материала, не обеспечивающего достаточного уровня снижения количества теряемого тепла. Кроме того, недостаточно эффективная теплоизоляция на поверхности выпускного канала корпуса роторно-поршневого двигателя приводит к повышению степени теплоотвода от горячих газов в каналы охлаждения, в результате чего снижается эффективность двигателя и увеличивается содержание СО и NOx в отработавших газах.

Реализация технического решения по заявляемому изобретению позволяет повысить эффективность роторно-поршневого двигателя за счет уменьшения теплоотвода горячих газов из полости его корпуса и повышения надежности теплозащитного покрытия.

Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в повышении теплозащитных, адгезионных и прочностных свойств покрытия внутренней поверхности корпуса и выпускного канала роторно-поршневого двигателя.

Заявленный технический результат достигается за счет того, что в корпусе роторно-поршневого двигателя внутреннего сгорания с расположенными в нем впускным и выпускным каналами, каналами охлаждения на внутреннюю поверхность корпуса роторно-поршневого двигателя и выпускного канала нанесено теплоизоляционное покрытие, выполненное из композиционного материала, причем покрытие внутренней поверхности корпуса выполнено из интеркерамоматричного композиционного материала на основе реакционно-спеченного карбида кремния (SiC), диборида циркония (ZrB2), дисилицида циркония (ZrSi2), ультрадисперсного углерода (С) и ванадия (V) при следующем соотношении компонентов, мас. %:

карбид кремния (SiC) 68-70 диборид циркония (ZrB2) 5 дисилицид циркония (ZrSi2) 5 ультрадисперсный углерод (С) 10 ванадий (V) 10-12,

с образованием фазы Новотного состава Zr5Si3C, а покрытие внутренней поверхности выпускного канала выполнено из материала на основе пористого карбида кремния (SiC), модифицированного волокнами нитрида кремния (Si3N4) в соотношении компонентов, мас. %:

карбид кремния (SiC) 78-80 волокна нитрида кремния (Si3N4) 20-22

Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как:

- выполнение покрытия внутренней поверхности корпуса из интеркерамоматричного композиционного материала на основе реакционно-спеченного карбида кремния (SiC), диборида циркония (ZrB2), дисилицида циркония (ZrSi2), ультрадисперсного углерода (С) и ванадия (V) при следующем соотношении компонентов, мас. %:

карбид кремния (SiC) 68-70 диборид циркония (ZrB2) 5 дисилицид циркония (ZrSi2) 5 ультрадисперсный углерода (С) 10 ванадий (V) 10-12,

с образованием фазы Новотного состава Zr5Si3C обеспечивает повышение теплозащитных, адгезионных и прочностных свойств покрытия за счет того, что фаза имеет более высокую термостойкость, чем силициды тугоплавких металлов, что особенно заметно при температурах выше 1000°С. Материалы, содержащие фазу Новотного выдерживают рабочие температуры до 1700-1900°С, отличительной особенностью которых является уникальная атомно-кристаллическая структура наноламинантной четырехшаговой спирали [Неорганические материалы, №10, том 51, 2015 г., изд-во «Наука»].

- выполнение покрытия внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя из материала на основе пористого карбида кремния (SiC), модифицированного волокнами нитрида кремния (Si3N4) в соотношении компонентов мас. %:

карбид кремния (SiC) 78-80 волокна нитрида кремния (Si3N4) 20-22,

обеспечивает повышение теплозащитных и прочностных свойств покрытия. Настоящее изобретение поясняется следующим описанием и иллюстрациями, где:

- на фиг. 1 изображена схема предлагаемого корпуса роторно-поршневого двигателя внутреннего сгорания;

- на фиг. 2 изображена таблица сравнительных механических и теплофизических параметров известного и предложенного технического решения.

На фиг. 1 приняты следующие обозначения:

1 - корпус роторно-поршневого двигателя;

2 - впускной канал корпуса роторно-поршневого двигателя;

3 - выпускной канал корпуса роторно-поршневого двигателя;

4 - каналы охлаждения;

5 - теплозащитное покрытие внутренней поверхности корпуса роторно-поршневого двигателя;

6 - теплозащитное покрытие внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя.

Корпус роторно-поршневого двигателя 1 включает расположенные в стенках впускной и выпускной каналы корпуса роторно-поршневого двигателя 2 и 3 соответственно, и каналы охлаждения 4. Поперечное сечение внутренней рабочей поверхности корпуса имеет профиль эквидистанты к эпитрохоиде, описываемой вершиной каждого выступа ротора (на чертеже не показан) при его планетарном движении внутри корпуса роторно-поршневого двигателя 1 (см. фиг. 1).

Необходимо отметить, что наиболее интенсивное тепловыделение в двигателе имеет место на такте расширения продуктов сгорания и в процессе продолжающегося при этом сгорания топлива, поэтому необходимо теплоизолировать не только зону горения и расширения, но также зону выпускного канала вывода выхлопных газов. При работе двигателя наличие слоев покрытия на внутренней рабочей поверхности корпуса роторно-поршневого двигателя 1, где происходит сгорание топлива и расширение продуктов сгорания, обеспечивает существенное уменьшение отвода тепла из рабочей камеры корпуса в охлаждающую среду и повышение полноты сгорания. При этом дополнительное снижение теплоотвода от горячих газов в охлаждающую среду достигается также за счет теплоизоляции внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя 3. Для этого на внутренних поверхностях корпуса роторно-поршневого двигателя 1 и выпускного канала корпуса роторно-поршневого двигателя 3 нанесены соответственно теплозащитное покрытие внутренней поверхности корпуса роторно-поршневого двигателя 5 и теплозащитное покрытие внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя 6, выполненные из композиционного материала, причем теплозащитное покрытие внутренней поверхности корпуса роторно-поршневого двигателя 5 выполнено из интеркерамоматричного композиционного материала на основе реакционно-спеченного карбида кремния (SiC), диборида циркония (ZrB2), дисилицида циркония (ZrSi2), ультрадисперсного углерода (С) и ванадия (V) с образованием фазы Новотного состава Zr5Si3C, при следующем соотношении компонентов мас. %.

Рецептура 1:

карбид кремния (SiC) 68 диборид циркония (ZrB2) 5 дисилицид циркония (ZrSi2) 5 ультрадисперсный углерод (С) 10 ванадий (V) 12

Рецептура 2:

карбид кремния (SiC) 70 диборид циркония (ZrB2) 5 дисилицид циркония (ZrSi2) 5 ультрадисперсный углерод (С) 10 ванадий (V) 10

Покрытие внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя 3 выполнено из материала на основе пористого карбида кремния (SiC), модифицированного волокнами нитрида кремния (Si3N4) в соотношении компонентов мас. %:

Рецептура 3:

карбид кремния (SiC) 78 волокна нитрида кремния (Si3 N4) 22

Рецептура 4:

карбид кремния (SiC) 80 волокна нитрида кремния (Si3 N4) 20

При этом приведенные в рецептурах диапазоны не должны толковаться как ограничивающие область предлагаемого технического решения.

Для нанесения покрытия на рабочую поверхность корпуса роторно-поршневого двигателя 1, изготовленного из алюминиевого сплава и внутреннюю поверхность выпускного канала корпуса роторно-поршневого двигателя 3 используется технология газодетонационного напыления. При этом применение ультрадисперсного углерода при температуре напыления способствует образованию тройного соединения - фазы Новотного состава Zr5Si3C, обладающего повышенной термопрочностью при применении в составе теплозащитного покрытия внутренней поверхности корпуса роторно-поршневого двигателя, а добавка ванадия (V) увеличивает адгезионную и когезионную прочность теплозащитного покрытия внутренней поверхности корпуса роторно-поршневого двигателя, исключая необходимость нанесения дополнительных промежуточных слоев, и повышает сплошность образующихся цирконокарбидных силикатных пленок, защищающих материал покрытия от окисления и износа.

При значениях глубины слоя и геометрических параметров структуры покрытия, аналогичных приведенным в известном техническом решении, указанном в качестве прототипа, толщина слоя теплозащитного покрытия внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя и внутренней поверхности корпуса роторно-поршневого двигателя составляет 0,1-0,3 мм при радиусе пор 0,075-0,2 мм. Оптимальная толщина стенок между соседними порами составляет 0,18-0,22 их радиуса при толщине стенки между соседними порами 0,015-0,04 мм., межосевое расстояние пор составляет 0,18-0,48 мм, что определяет пониженную теплопроводность материала покрытия и обеспечивает уменьшение теплоотвода горячих газов из полости внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя и внутренней поверхности корпуса роторно-поршневого двигателя с повышением надежности и долговечности покрытия.

Сравнительный анализ данных, приведенных в таблице (см. фиг. 2) позволяет сделать вывод о том, что предложенное техническое решение обеспечивает достаточную термопрочность, высокую адгезионную способность покрытия за счет исключения промежуточных дополнительных слоев, высокие теплозащитные свойства покрытия и снижение эмиссии токсичных газов (СО и NOx).

Таким образом, выполнение покрытия внутренней поверхности корпуса роторно-поршневого двигателя из интеркерамоматричного композиционного материала на основе реакционно-спеченного карбида кремния (SiC), диборида циркония (ZrB2), дисилицида циркония (ZrSi2), ультрадисперсного углерода (С) и ванадия (V) при указанном выше соотношении компонентов мас. % с образованием фазы Новотного состава Zr5Si3C, и выполнение покрытия внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя из материала на основе пористого карбида кремния (SiC), модифицированного волокнами нитрида кремния (Si3N4) при указанном выше соотношении компонентов мас. % обеспечивает повышение теплозащитных, адгезионных и термопрочностных свойств покрытия, что позволяет решить проблему повышения эффективности двигателя, а именно повысить индикаторный КПД двигателя и уменьшить содержания СО и NOx в отработавших газах и способствует повышению долговечности и надежности покрытий корпуса и внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя.

Похожие патенты RU2738156C1

название год авторы номер документа
Способ получения ультравысокотемпературного керамического композита MB/SiC, где M = Zr, Hf 2016
  • Кузнецов Николай Тимофеевич
  • Севастьянов Владимир Георгиевич
  • Симоненко Елизавета Петровна
  • Симоненко Николай Петрович
RU2618567C1
Способ получения композиционного порошка MB-SiC, где M=Zr, Hf 2016
  • Кузнецов Николай Тимофеевич
  • Севастьянов Владимир Георгиевич
  • Симоненко Елизавета Петровна
  • Симоненко Николай Петрович
RU2615692C1
МАТЕРИАЛЫ И ИЗДЕЛИЯ, СПОСОБНЫЕ ПРОТИВОСТОЯТЬ ВЫСОКИМ ТЕМПЕРАТУРАМ В ОКИСЛЯЮЩЕЙ СРЕДЕ, И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 2011
  • Андреани Анн-Софи
  • Ребийа Франсис
  • Пулон Ажелин
  • Тебо Жак
  • Соверош Анн
RU2579054C2
КОМПОЗИЦИОННЫЙ ЖАРОСТОЙКИЙ И ЖАРОПРОЧНЫЙ МАТЕРИАЛ 1998
  • Гнесин Б.А.(Ru)
  • Эпельбаум Борис Марович
  • Гуржиянц П.А.(Ru)
RU2154122C2
Гетеромодульный керамический композиционный материал и способ его получения 2019
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
  • Бурлаченко Александр Геннадьевич
  • Мировой Юрий Александрович
  • Дедова Елена Сергеевна
RU2725329C1
Способ получения композиционного металл-дисперсного покрытия, дисперсная система для осаждения композиционного металл-дисперсного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Есаулова Целина Вацлавовна
RU2746863C1
Способ получения композиционного металл-дисперсного покрытия, дисперсная система для осаждения композиционного металл-дисперсного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Кукушкин Сергей Сергеевич
  • Светлов Геннадий Валентинович
  • Есаулова Целина Вацлавовна
RU2746861C1
Цилиндропоршневая группа двигателя внутреннего сгорания 2016
  • Низовцев Владимир Евгеньевич
  • Климов Денис Александрович
  • Корнилов Александр Ананьевич
RU2637794C1
ЖАРОСТОЙКИЙ МАТЕРИАЛ 2000
  • Гнесин Б.А.
  • Гуржиянц П.А.
RU2178958C2
Способ изготовления двумерно армированного углерод-карбидного композиционного материала на основе углеродного волокнистого наполнителя со смешанной углерод-карбидной матрицей 2021
  • Меламед Анна Леонидовна
  • Корчинский Никита Андреевич
  • Кулькова Валентина Семеновна
RU2780174C1

Иллюстрации к изобретению RU 2 738 156 C1

Реферат патента 2020 года Корпус роторно-поршневого двигателя внутреннего сгорания

Изобретение относится к области двигателестроения, а именно к роторно-поршневым двигателям внутреннего сгорания, и может быть использовано для теплоизоляции корпуса двигателя. Корпус двигателя с расположенными в нем впускным и выпускным каналами содержит нанесенное на внутреннюю поверхность корпуса двигателя и внутреннюю поверхность выпускного канала корпуса двигателя теплоизоляционное покрытие. Покрытие корпуса выполнено из интеркерамоматричного композиционного материала на основе реакционно-спеченного кремния SiC, диборида циркония ZrB2, дисилицида циркония ZrSi2, ультрадисперсного углерода С и ванадия V при определенном соотношении компонентов в мас.% с образованием фазы Новотного состава Zr5Si3C. Покрытие внутренней поверхности выпускного канала корпуса выполнено из материала на основе пористого карбида кремния SiC, модифицированного волокнами нитрида кремния Si3N4 при определенном соотношении компонентов в мас.%. Изобретение направлено на повышение теплозащитных, адгезионных и прочностных свойств покрытия внутренней поверхности корпуса роторно-поршневого двигателя и внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя. 1 табл., 2 ил.

Формула изобретения RU 2 738 156 C1

Корпус роторно-поршневого двигателя внутреннего сгорания с расположенными в нем впускным и выпускным каналами, каналами охлаждения и нанесенным на внутреннюю поверхность корпуса и выпускного канала теплоизоляционным покрытием, выполненным из композиционного материала, отличающийся тем, что покрытие внутренней поверхности корпуса роторно-поршневого двигателя выполнено из интеркерамоматричного композиционного материала на основе реакционно-спеченного карбида кремния SiC, диборида циркония ZrB2, дисилицида циркония ZrSi2, ультрадисперсного углерода С и ванадия V при следующем соотношении компонентов, мас.%:

карбид кремния SiC 68-70 диборид циркония ZrB2 5 дисилицид циркония ZrSi2 5 ультрадисперсный углерод С 10 ванадий V 10-12,

с образованием фазы Новотного состава Zr5Si3C, а покрытие внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя выполнено из материала на основе пористого карбида кремния SiC, модифицированного волокнами нитрида кремния Si3N4 в соотношении компонентов, мас.%:

карбид кремния SiC 78-80 волокна нитрида кремния Si3N4 20-22

Документы, цитированные в отчете о поиске Патент 2020 года RU2738156C1

Устройство для метания водяной струи, соединенной с источником электрического тока 1924
  • Мухартов И.Ф.
SU5823A1
0
SU182138A1
US 4021163 A1, 03.05.1977
СПОСОБ ПОДГОТОВКИ ЖИДКИХ ВЫСОКОАКТИВНЫХ ОТХОДОВ К ОСТЕКЛОВЫВАНИЮ 2009
  • Борисов Георг Борисович
  • Волчок Юрий Юрьевич
  • Глаговский Эдуард Михайлович
  • Полуэктов Павел Петрович
  • Свиридов Станислав Иванович
  • Смелова Татьяна Владимировна
  • Фатхудинов Раввин Хилавович
RU2432630C2
DE 102007026598 A1, 11.12.2008.

RU 2 738 156 C1

Авторы

Низовцев Владимир Евгеньевич

Климов Денис Александрович

Ступеньков Михаил Иванович

Бортников Андрей Дмитриевич

Даты

2020-12-08Публикация

2020-06-18Подача