СПОСОБ ОДНОВРЕМЕННОГО ИЗМЕРЕНИЯ ЧАСТОТЫ, ФАЗЫ, НАЧАЛЬНОЙ ФАЗЫ И АМПЛИТУДЫ ГАРМОНИЧЕСКОГО СИГНАЛА Российский патент 2020 года по МПК G01R23/00 

Описание патента на изобретение RU2738602C1

Способ относится к измерительной технике и может быть использован для одновременного измерения частоты, фазы, начальной фазы и амплитуды непрерывного гармонического сигнала по набору исходных данных, заданных большим набором дискретных отсчетов.

Известен способ определения частоты узкополосного сигнала (см. патент RU 2117306, опубликован 10.08.1998), заключающийся в дискретизации сигнала, вычислении его спектра, определении номера максимальной спектральной составляющей, измерении ее амплитуды, а также амплитуды и номера большей из смежных с ней составляющих, и использовании этих исходных данных для вычисления частоты.

Известен способ измерения амплитуд гармонических колебаний (см. патент RU 2060475, опубликован 15.04.1993), заключающийся в регистрации в спектре сигнала гармоники с максимальной амплитудой, определении ее частоты и использовании этой частоты в формуле вычисления амплитуды гармонических колебаний.

Известен способ совместного измерения частоты, амплитуды, фазы и начальной фазы гармонического сигнала (см. патент RU 2486529, опубликован 27.06.2013), который выбран в качестве прототипа, заключающийся в дискретизации аналогового сигнала, представлении его фрагмента тройкой цифровых кодов S1, S2, S3, сформированных в моменты времени t1, t2, t3 и используемых для вычисления частоты сигнала f. При этом фрагмент сигнала и соответствующую ему тройку кодов выбирают так, чтобы код S2 не равнялся нулю. При измерении частоты те же коды используют для вычисления амплитуды U, фазы ϕ и начальной фазы сигнала ϕ0.

Способ осуществляют следующим образом. Принятый аналоговый сигнал дискретизируют, а его фрагмент, представленный тройкой цифровых кодов S1, S2, S3, сформированных в моменты времени t1, t2, t3 используют для вычисления частоты сигнала по формуле , где τ - интервал дискретизации; при этом фрагмент сигнала и соответствующую ему тройку кодов выбирают так, чтобы код S2 не равнялся нулю, одновременно с измерением частоты, те же коды используют для вычисления амплитуды U, фазы ϕ и начальной фазы сигнала ϕ0 в соответствии с выражениями: где фаза ϕ соответствует моменту времени t2.

Недостатком указанного способа является низкая точность одновременного измерения частоты, фазы, начальной фазы и амплитуды непрерывного гармонического сигнала.

Техническая проблема заключается в недостаточной точности одновременного измерения частоты, фазы, начальной фазы и амплитуды непрерывного гармонического сигнала при наличии погрешностей в измерении амплитуды в используемых отсчетах.

Решаемая техническая задача (технический результат) способа одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала заключается в повышении точности измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала, при наличии погрешностей в измерении амплитуды в используемых отсчетах.

Решаемая техническая задача (технический результат) в способе одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала, включающем дискретизацию аналогового сигнала, представление его фрагмента тройкой цифровых кодов S1, S2, S3, сформированных в моменты времени t1, t2, t3, достигается тем, что представление сигнала формируют большим набором цифровых кодов Si, сформированных в соответствующие моменты времени ti, где i от 4 до N, где N много больше четырех, представляет собой ряд натуральных чисел, ограниченный сформированным набором отсчетов цифровых кодов, с равным интервалом дискретизации отсчетов цифровых кодов Δt, используемых для одновременного определения частоты сигнала ω по формуле:

где k - порядок точности аппроксимации; N - количество отсчетов цифровых кодов; i - номер отсчета; - производная первого порядка значения цифрового кода i-го отсчета; - производная второго порядка значения цифрового кода i-го отсчета; avg - операция вычисления среднего арифметического набора значений, начальной фазы сигнала ϕ0 по формуле:

где k - порядок точности аппроксимации; N - количество отсчетов цифровых кодов; i - номер отсчета; ω - частота сигнала; Si - значение цифрового кода i-го отсчета; - производная второго порядка значения цифрового кода i-го отсчета; t1 - момент времени i-го отсчета; avg - операция вычисления среднего арифметического набора значений, фазы сигнала ϕi по формуле:

где i - номер отсчета; ω - частота сигнала; Si - значение цифрового кода i-го отсчета; - производная второго порядка значения цифрового кода i-го отсчета; ti - момент времени i-го отсчета, амплитуды сигнала U по формуле:

где k - порядок точности аппроксимации; N - количество отсчетов цифровых кодов; i - номер отсчета; ω - частота сигнала; ϕ - фаза сигнала ; - производная первого порядка значения цифрового кода i-го отсчета; ti - момент времени i-го отсчета; avg - операция вычисления среднего арифметического набора значений, с учетом шумовой составляющей сигнала, где оценки производных отсчетов значений цифровых кодов вычисляются в моменты времени ti (i=k, N-k) методом центральных конечных разностей с использованием формул аппроксимации k-го порядка точности при условии, что количество отсчетов цифровых кодов N много больше порядка точности аппроксимации k.

На фиг. 1 приведена блок схема устройства, реализующая предложенный способ одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала.

На фиг. 2 представлен алгоритм работы контроллера измерения параметров гармонического сигнала.

Устройство для осуществления предложенного способа одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала, представленное на фиг. 1 содержит последовательно соединенные волоконными световодами источник узкополосного оптического сигнала 1, модулятор Маха-Цандера 2, при этом электрический порт модулятора Маха-Цандера 2 является входом устройства, фотоприемник 3, а также контроллер измерения параметров гармонического сигнала 4, при этом контроллер измерения параметров гармонического сигнала 4 имеет выход, который является выходом устройства.

Предварительно в блок контроллера измерения параметров гармонического сигнала 4 загружают программу, работающую согласно алгоритму, который приведен на фиг. 2.

Подключают систему электропитания для блоков источника узкополосного оптического сигнала 1, модулятора Маха-Цандера 2, контроллера измерения параметров гармонического сигнала 4.

Система электропитания необходимая для блоков источника узкополосного оптического сигнала 1, модулятора Маха-Цандера 2, контроллера измерения параметров гармонического сигнала 4 на фиг. 1 не показана.

Устройство работает следующим образом. На электрический порт модулятора Маха-Цандера 2, например, с принимающей антенны подают гармонический сигнал с измеряемыми параметрами.

Для одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала с помощью источника узкополосного оптического сигнала 1 генерируют сигнал с частотой ƒ1, который затем модулируют в модуляторе Маха-Цандера 2, работающем в нулевой рабочей точке модуляционной характеристики для подавления несущей, измеряемым гармоническим сигналом с неизвестными параметрами ƒm. Полученная таким образом пара гармоник с частотами ƒ1m и ƒ1m поступает на фотоприемник 3, где формируется биение этой пары гармоник S. Полученное биение поступает на контроллер измерения параметров гармонического сигнала 4, где проводится дискретизация сигнала и измерение частоты, фазы, начальной фазы и амплитуды гармонического сигнала, поступающего на электрический порт модулятора Маха-Цандера 2.

Рассмотрим осуществление способа одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала.

Осуществляется дискретизация аналогового сигнала. Полученный набор отсчетов цифровых кодов {Si} i=1,N (где N>>4) (амплитуды сигнала) измеренных в моменты времени ti используется для дальнейшего одновременного определения частоты, фазы, начальной фазы и амплитуды гармонического сигнала. Перед началом работы контроллера измерения параметров гармонического сигнала с заданным алгоритмом задаются требуемые погрешности вычисления частоты, начальной фазы и амплитуды - εω, εϕ, εU, соответственно. Устанавливается начальное значение k=0 порядка точности аппроксимации конечных разностей. Дальнейшие вычисления ведутся по следующему циклическому алгоритму.

Задается значение k=k+1 для увеличения порядка точности аппроксимации конечных разностей. По формулам для центральных конечных разностей k-го порядка точности аппроксимации вычисляют численные значения производных цифровых кодов для всех значений номеров отсчетов i ∈ [k, N-k]. Вычисляют значение ωi для всех значений номеров отсчетов i ∈ [k, N-k]. По известным данным ωi вычисляются значения ϕi для всех значений номеров отсчетов i ∈ [k, N-k]. По известным данным ωi и ϕi вычисляются значения значение Ui для всех значений номеров отсчетов i ∈ [k, N-k], Вычисляются средние значения ωki, ϕki и Uki. Для k>1 проверяется погрешность вычисления частоты, начальной фазы и амплитуды, в противном случае происходит переход к началу алгоритма. Если одновременно не выполняются условия требуемой точности для вычислений частоты, начальной фазы и амплитуды |ωkk-1|<εω и |ϕ0k0k-1|<εϕ и |Uk-Uk-1|<εU, то осуществляется переход на начало алгоритма. В случае выполнения требований необходимой точности вычислений, осуществляется выход из цикла с присвоением значений вычисленных частоты, начальной фазы, мгновенной фазы и амплитуды ω=ωk, ϕ0k0, ϕiki, U=Uk, соответственно. Производится расчет шумовой составляющей сигнала SiNoise=Ucos(ωt+ϕi)-Si для всех номеров отсчетов i ∈ [1,N]. Производится вывод полученных результатов, частоты, начальной фазы и амплитуды - ω, ϕ0, U соответственно, кроме того, выводятся значения мгновенной фазы ϕi и шумовой составляющей сигнала SiNoise для номеров отсчетов i ∈ [1,N].

Устройство для осуществления предложенного способа одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала может быть реализовано на следующих элементах, рассчитанных на работу на длине волны 1300 нм (возможны и другие длины волн), например:

В качестве источника узкополосного оптического сигнала 1 может быть выбран лазерный диод IDL10S-1300 НИИ «Полюс» или ДМП0131-22 ООО НПФ «Дилаз»;

В качестве модулятора Маха-Цандера 2, может быть выбран модулятор на основе интерферометра Маха-Цендера 500-х-13 компании Laser2000;

В качестве фотоприемника 3 может быть выбран высокоскоростной волоконно-оптический InGaAs микроволновый широкополосный PIN фотоприемник компании Optilab, например, PD-40-MM;

В качестве контроллера измерения параметров гармонического сигнала 4 может быть выбран микропроцессорный контроллер на базе чипов фирм Atmel, Microchip и т.д.;

В качестве волоконных световодов могут быть выбраны эталонные шнуры или кабели ТЕЛЕКОМ-ТЕСТ фирмы ООО «Производственно-торговая компания СОКОЛ».

Для построения устройства для осуществления предложенного способа одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала все указанные блоки генерации, приема и обработки сигналов могут быть выполнены на едином кристалле или в интегральном исполнении.

Все это позволяет говорить о достижении решения поставленной технической задачи (технического результата) - одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала, при наличии погрешностей в измерении амплитуды в используемых отсчетах.

Похожие патенты RU2738602C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ПСЕВДОСЛУЧАЙНОГО СИГНАЛА 1989
  • Вишняков В.А.
SU1692272A1
СПОСОБ СОВМЕСТНОГО ИЗМЕРЕНИЯ ЧАСТОТЫ, АМПЛИТУДЫ, ФАЗЫ И НАЧАЛЬНОЙ ФАЗЫ ГАРМОНИЧЕСКОГО СИГНАЛА 2011
  • Вольфовский Борис Наумович
RU2486529C2
СПОСОБ ПРЕЦИЗИОННЫХ ИЗМЕРЕНИЙ АМПЛИТУДЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ СВЕРХНИЗКИХ И ЗВУКОВЫХ ЧАСТОТ ПРИ СИЛЬНОЙ ЗАШУМЛЕННОСТИ СИГНАЛА 2019
  • Уткин Петр Михайлович
  • Кожевников Андрей Юрьевич
RU2714861C1
ИЗМЕРИТЕЛЬ ХАРАКТЕРИСТИК ФАЗОВЫХ ФЛУКТУАЦИЙ 1992
  • Карелин В.А.
RU2041469C1
Цифровой способ измерения фазы гармонического сигнала 2017
  • Тутыгин Владимир Семенович
RU2654945C1
СПОСОБ ИДЕНТИФИКАЦИИ МУЛЬТИСИНУСОИДАЛЬНЫХ ЦИФРОВЫХ СИГНАЛОВ 2018
  • Новосельцева Марина Александровна
  • Гутова Светлана Геннадьевна
  • Казакевич Иван Андреевич
RU2703933C1
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПОМЕХ 2011
  • Матюшин Олег Тарасович
  • Варивода Сергей Евгеньевич
  • Густелёв Александр Александрович
  • Кольцов Алексей Владимирович
  • Степин Алексей Васильевич
  • Черноплеков Анатолий Никифорович
RU2456743C1
СПОСОБ ПОИСКА ШУМОПОДОБНЫХ СИГНАЛОВ С МИНИМАЛЬНОЙ ЧАСТОТНОЙ МАНИПУЛЯЦИЕЙ 2012
  • Бондаренко Валерий Николаевич
  • Краснов Тимур Валериевич
  • Гарифуллин Вадим Фанисович
RU2486683C1
ПОЛИГАРМОНИЧЕСКИЙ ПРЕДСКАЗЫВАЮЩИЙ ФИЛЬТР 1993
  • Слобцов Юрий Васильевич
  • Красногоров Сергей Иванович
  • Зюзин Алексей Владимирович
  • Иванец Григорий Васильевич
RU2046359C1
ЦИФРОВЫЕ СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МГНОВЕННОЙ ФАЗЫ ПРИНЯТОЙ РЕАЛИЗАЦИИ ГАРМОНИЧЕСКОГО ИЛИ КВАЗИГАРМОНИЧЕСКОГО СИГНАЛА 2010
  • Колотушкин Роберт Иванович
RU2463701C2

Иллюстрации к изобретению RU 2 738 602 C1

Реферат патента 2020 года СПОСОБ ОДНОВРЕМЕННОГО ИЗМЕРЕНИЯ ЧАСТОТЫ, ФАЗЫ, НАЧАЛЬНОЙ ФАЗЫ И АМПЛИТУДЫ ГАРМОНИЧЕСКОГО СИГНАЛА

Способ относится к измерительной технике и может быть использован для одновременного измерения частоты, фазы, начальной фазы и амплитуды непрерывного гармонического сигнала по набору исходных данных, заданных большим набором дискретных отсчетов. Технический результат заключается в повышении точности одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала, при наличии погрешностей в измерении амплитуды в используемых отсчетах. Заявленный способ содержит дискретизацию аналогового сигнала, представление его фрагмента тройкой цифровых кодов S1, S2, S3, сформированных в моменты времени t1, t2, t3, отличается тем, что представление сигнала формируют большим набором цифровых кодов Si, сформированных в соответствующие моменты времени ti, где i - от 4 до N, где N - много больше четырех, представляет собой ряд натуральных чисел, ограниченный сформированным набором отсчетов цифровых кодов, с равным интервалом дискретизации отсчетов цифровых кодов Δt, используемых для одновременного определения частоты сигнала, начальной фазы сигнала, фазы сигнала, амплитуды сигнала. 2 ил.

Формула изобретения RU 2 738 602 C1

Способ одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала, включающий дискретизацию аналогового сигнала, представление его фрагмента тройкой цифровых кодов S1, S2, S3, сформированных в моменты времени t1, t2, t3, отличающийся тем, что представление сигнала формируют набором цифровых кодов Si, сформированных в соответствующие моменты времени ti, где i - от 4 до N, где N - много больше четырех, представляет собой ряд натуральных чисел, ограниченный сформированным набором отсчетов цифровых кодов, с равным интервалом дискретизации отсчетов цифровых кодов Δt, используемых для одновременного определения частоты сигнала ω по формуле:

где k - порядок точности аппроксимации;

N - количество отсчетов цифровых кодов;

i - номер отсчета;

- производная первого порядка значения цифрового кода i-го отсчета;

- производная второго порядка значения цифрового кода i-го отсчета;

avg - операция вычисления среднего арифметического набора значений, начальной фазы сигнала ϕ0 по формуле:

где k - порядок точности аппроксимации;

N - количество отсчетов цифровых кодов;

i - номер отсчета;

ω - частота сигнала;

Si - значение цифрового кода i-го отсчета;

- производная второго порядка значения цифрового кода i-го отсчета;

ti - момент времени i-го отсчета;

avg - операция вычисления среднего арифметического набора значений, фазы сигнала ϕi по формуле:

где i - номер отсчета;

ω - частота сигнала;

Si - значение цифрового кода i-го отсчета;

- производная второго порядка значения цифрового кода i-го отсчета;

ti - момент времени i-го отсчета,

амплитуды сигнала U по формуле:

где k - порядок точности аппроксимации;

N - количество отсчетов цифровых кодов;

i - номер отсчета;

ω - частота сигнала;

ϕ - фаза сигнала;

- производная первого порядка значения цифрового кода i-го отсчета;

ti - момент времени i-го отсчета;

avg - операция вычисления среднего арифметического набора значений, с учетом шумовой составляющей сигнала, где оценки производных отсчетов значений цифровых кодов вычисляются в моменты времени ti (i=k,N-k) методом центральных конечных разностей с использованием формул аппроксимации k-го порядка точности при условии, что количество отсчетов цифровых кодов N много больше порядка точности аппроксимации k.

Документы, цитированные в отчете о поиске Патент 2020 года RU2738602C1

СПОСОБ СОВМЕСТНОГО ИЗМЕРЕНИЯ ЧАСТОТЫ, АМПЛИТУДЫ, ФАЗЫ И НАЧАЛЬНОЙ ФАЗЫ ГАРМОНИЧЕСКОГО СИГНАЛА 2011
  • Вольфовский Борис Наумович
RU2486529C2
СПОСОБ ИЗМЕРЕНИЯ ЧАСТОТЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ 1992
  • Слюсар Вадим Иванович[Ua]
  • Покровский Владимир Иванович[Ua]
  • Сахно Валентин Филиппович[Ua]
  • Слюсарь Игорь Иванович[Ua]
RU2111496C1
СПОСОБ ГАРМОНИЧЕСКОГО АНАЛИЗА ПЕРИОДИЧЕСКОГО МНОГОЧАСТОТНОГО СИГНАЛА 2010
  • Давыдочкин Вячеслав Михайлович
  • Давыдочкина Светлана Вячеславовна
RU2435168C1
СПОСОБ СПЕКТРАЛЬНОГО АНАЛИЗА СЛОЖНЫХ НЕСИНУСОИДАЛЬНЫХ ПЕРИОДИЧЕСКИХ СИГНАЛОВ ПРЕДСТАВЛЕННЫХ ЦИФРОВЫМИ ОТСЧЕТАМИ 2002
  • Аврамчук В.С.
  • Гольдштейн Е.И.
RU2229139C1
US 7053357 B2 30.05.2006.

RU 2 738 602 C1

Авторы

Морозов Олег Геннадьевич

Нуреев Ильнур Ильдарович

Сахабутдинов Айрат Жавдатович

Анфиногентов Владимир Иванович

Иванов Александр Алексеевич

Кузнецов Артем Анатольевич

Даты

2020-12-14Публикация

2020-03-03Подача