Способ получения композиционного электроконтактного материала Cu-SiC Российский патент 2020 года по МПК C22C1/05 B22F3/14 B22F3/23 H01H1/25 C22C9/00 

Описание патента на изобретение RU2739493C1

Изобретение относится к области порошковой металлургии, в частности к технологии получения реакционных композиционных порошков для последующего изготовления жаропрочных и износостойких электротехнических композиционных материалов на основе меди, которые могут быть использованы в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и вакуумных дугогасительных камерах.

При изготовлении указанных материалов необходимо получить сочетание высокой электропроводности, для чего в качестве основы используют медь (Cu), и высокой износостойкости при воздействии электрической дуги, для чего необходимо вводить в состав композиционного материала тугоплавкие керамические компоненты в количестве, не превышающем 50 об.% с высокой температурой плавления и испарения, таких как карбид кремния (SiC).

Изготавливаемые по заявленному способу порошковые частицы представляют собой композит, состоящий из меди и реакционной смеси кремния и углерода (Si+C), которая при спекании способна вступать в экзотермическую безгазовую реакцию с образованием карбида кремния. Реакция между кремнием углеродом является «активатором» спекания, она способствует спеканию композита до высокой относительной плотности.

Известен нанокомпозиционный электроконтактный материал и способ его получения, включающий механическую обработку смесей металлов в высокоэнергетической шаровой планетарной мельнице с последующим твердофазным спеканием полученной активированной смеси, отличающийся тем, что высокоэнергетическую обработку проводят в атмосфере аргона при соотношении масс шаров и исходных порошков 20:1-40:1, при скорости вращения планетарного диска планетарной мельницы 694-900 об/мин и продолжительности обработки не более 90 минут, спекание полученных нанокомпозионных частиц с размером кристаллитов тугоплавкого металла менее 5 нм осуществляют методом искрового плазменного спекания, при этом в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток 1000-5000 А под нагрузкой до 50 МПа, при этом температура спекания не превышает 1000°C при продолжительности процесса не более 15 минут. (RU 2597204 С1, опубл. 10.09.2016).

Недостатком способа является необходимость длительной обработки при высокой скорости вращения планетарного диска планетарной мельницы, что неизбежно приводит к загрязнению обрабатываемых порошков материалом барабанов и размольных шаров.

Известен способ получения электроконтактного композитного материала на основе меди, включающий механическую обработку смеси порошков меди и тугоплавного металла, в высокоэнергетической шаровой планетарной мельнице, и последующим твердофазным спеканием полученной активированной смеси порошков, отличающийся тем, что механическую обработку смеси порошков проводят в атмосфере аргона при соотношении масс шаров и смеси порошков 20:1-40:1, скорости вращения планетарного диска планетарной мельницы 694-900 об/мин и продолжительности обработки 5-90 мин с получением нанокомпозиционных частиц с размером кристаллитов тугоплавкого металла от 5 нм до 100 мкм, при этом твердофазное спекание ведут в виде искрового плазменного спекания в камере в вакууме или в атмосфере инертного газа с пропусканием через спекаемую смесь порошков импульсного электрического тока 500-5000 А под нагрузкой до 50 МПа, при температуре 700-1000°C и продолжительности спекания 5-15 мин (RU 2645855 С2, опубл. 28.02.2018)

Недостатком способа является длительность обработки при высоких скоростях вращения планетарного диска, приводящее к намолу железа, а также высокое соотношение массы шаров и массы порошков (40:1), что значительно сокращает выход годного порошка.

Наиболее близким аналогом является способ получения композиционного материала Cu-SiC с содержанием карбида кремния от 5 до 25 мас. %. Способ включает получение порошковой смеси, содержащей частицы меди и упрочнителя (SiC), размол ее в высокоэнергетической мельнице, последующее холодное компактирование в брикеты, нагрев до определенной температуры и прессование при этой температуре с получением материала, состоящего из матрицы на основе медного твердого раствора и распределенного в ней упрочнителя. В качестве исходных материалов для получения композиционных материалов использовались токарная стружка чистой меди и частицы карбида кремния средним размером 10-40 мкм в качестве упрочнителя. (RU 2202642, опубл. 20.04.2003).

Недостатками известного способа является необходимость проведения на начальном этапе холодного двухстороннего прессования для достижения, по меньшей мерее, 80% теоретической плотности и высокая относительная пористость 5%. Также к недостаткам можно отнести отсутствие свободного графита в составе, при его введении повышаются дугостойкость и износостойкость как самого материала, так и контртела.

Высокая стоимость и недостаточно высокие свойства таких материалов, и их аналогов ограничивают использование материалов в производстве силовых разрывных и дугогасительных контактов в переключателях мощных электрических сетей, работающих в условиях больших токов и высоких напряжений.

Техническим результатом предлагаемого изобретения является упрощение технологии, позволяющее снизить энергозатраты, исключить применение различных активаторов спекания, в части материала - повышение его твердости, снижение пористости и удельного электросопротивления

Технический результат достигается тем, что способ получения композиционного электроконтактного материала включает механическую обработку смеси порошков меди, кремния и углерода в высокоэнергетической шаровой планетарной мельнице с последующим одностадийным реакционным спеканием полученной активированной смеси порошков. Механическую обработку смеси порошков проводят в атмосфере аргона при соотношении масс шаров и смеси порошков 10:1-20:1, скорости вращения планетарного диска планетарной мельницы 300-500 об/мин и продолжительности обработки 60-180 минут с получением реакционных композиционных частиц. Реакционное спекание ведут в виде искрового плазменного спекания в камере в вакууме или в атмосфере инертного газа с пропусканием через спекаемую смесь порошков импульсного электрического тока 500-5000 А под нагрузкой 30-50 МПа, при температуре 700-1000°C и продолжительности спекания 10-30 минут в одну стадию.

Композиционный электроконтактный материал, полученный согласно способу, представляет собой композит Cu-(5-50 об.%) SiC, состоящий из кластеров на основе SiC, распределенных в медной матрице, характеризующийся тем, что имеет плотность не менее 99%, твердость по Виккерсу 1-2,5 ГПа, электросопротивление 10-20 мкОм⋅см.

В качестве основных исходных компонентов для получения экспериментальных образцов нанокомпозитных материалов используются порошки металлов: Cu (порошок медный электролитический) марки ПМС-В (ГОСТ 4960-75); Si (порошок кремния) марки КЭФ-4.5 (ГОСТ 19658-81); С (сажа) марки П804Т (ТУ 38-1154-88).

Примеры получения нанокомпозиционного электроконтактного материала Cu-SiC из реакционной смеси Cu-(Si+C), приведены ниже.

Пример 1.

Получение нанокомпозиционного электроконтактного материала Cu-5% об. SiC

Порошки Cu и (Si+C) смешивают при соотношении 95 об.% Cu и 5 об.% (Si+C). Приготовленную смесь подвергают высокоэнергетической механической обработке (ВЭМО) в планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 347 об/мин. Соотношение шаров к смеси порошка составляет 10:1. Используют стальные шары 6 мм в диаметре. Время обработки 60 минут.

Полученный реакционный композиционный порошок подвергают искровому плазменному спеканию (ИПС), для этого порошок помещают в графитовую цилиндрическую пресс-форму, фиксируют ее между электродами, являющимися одновременно пуансонами пресса, помещают пресс-форму в камеру, в камере создают вакуум, через спекаемый образец пропускают импульсный электрический ток при давлении прессования 50 МПа и спекают образец при температуре 1000°C в течение 10 мин со скоростью подъема температуры 100°C/мин. В результате получают образцы в форме дисков диаметром 15-50 мм и толщиной 3-10 мм.

Благодаря протеканию реакции во время консолидации материала происходит образование фазы карбида кремния, которая увеличивает твердость и стойкость получаемого материала к воздействию электрической дуги.

Пример 2 аналогичен примеру 1, однако с целью уменьшения размера получаемых композиционных частиц используются размольные шары меньшего диаметра (2 мм) в том же соотношении к массе загрузке (10:1).

Пример 3 аналогичен примеру 1, однако ИПС проводят при более низкой температуре и большем времени выдержки - 700°C и 30 минут соответственно.

К преимуществам изобретения можно отнести:

- упрощение технологии, позволяющее снизить энергозатраты за счет проведения консолидации материала в одну стадию, а также исключить применение различных активаторов спекания;

- расширение спектра электротехнических композиционных материалов на основе меди;

- повышение эксплуатационных свойств за счет композиционной структуры предлагаемого материала.

Потенциальными потребителями материала, полученного по предлагаемому способу, являются: электротехническая промышленность, где необходимы высокая электрическая проводимость, высокие механические, физические и эксплуатационные свойства, такие как прочность, твердость при комнатной и повышенной температурах, термическая стабильность, дугостойкость, для применения в производстве силовых разрывных и вакуумных дугогасительных контактов в переключателях (размыкателях) мощных электрических сетей, работающих в условиях больших токов и высоких напряжений.

Похожие патенты RU2739493C1

название год авторы номер документа
НАНОКОМПОЗИЦИОННЫЙ ЭЛЕКТРОКОНТАКТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Шкодич Наталья Федоровна
  • Вадченко Сергей Георгиевич
  • Кусков Кирилл Васильевич
  • Московских Дмитрий Олегович
  • Рогачев Александр Сергеевич
  • Мукасьян Александр Сергеевич
RU2597204C1
Способ получения нанокерамики методом совмещения самораспространяющегося высокотемпературного синтеза и искрового плазменного спекания 2015
  • Московских Дмитрий Олегович
  • Рогачев Александр Сергеевич
  • Мукасьян Александр Сергеевич
RU2614006C1
Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла 2016
  • Кусков Кирилл Васильевич
  • Московских Дмитрий Олегович
  • Шкодич Наталья Федоровна
  • Вадченко Сергей Георгиевич
  • Рогачев Александр Сергеевич
  • Мукасьян Александр Сергеевич
RU2645855C2
Нанокомпозитные материалы на основе металлических псевдосплавов для контактов переключателей мощных электрических сетей с повышенными физико-механическими свойствами 2016
  • Кусков Кирилл Васильевич
  • Московских Дмитрий Олегович
  • Непапушев Андрей Александрович
  • Шкодич Наталья Федоровна
  • Рогачев Александр Сергеевич
  • Мукасьян Александр Сергеевич
RU2706013C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО ПОРОШКОВОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ КАРБИДОВ КРЕМНИЯ И ТИТАНА 2016
  • Каченюк Максим Николаевич
  • Оглезнева Светлана Аркадьевна
  • Сомов Олег Васильевич
RU2638866C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ МЕДИ И КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, ИЗГОТОВЛЕННЫЙ ЭТИМ СПОСОБОМ 2001
  • Аксенов А.А.
  • Гершман И.С.
  • Кудашов Д.В.
  • Просвиряков А.С.
  • Портной В.К.
RU2202642C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА n-ТИПА НА ОСНОВЕ ТРОЙНЫХ ТВЕРДЫХ РАСТВОРОВ MgSiSn 2013
  • Драбкин Игорь Абрамович
  • Каратаев Владимир Викторович
  • Лаврентьев Михаил Геннадьевич
  • Освенский Владимир Борисович
  • Пархоменко Юрий Николаевич
  • Сорокин Александр Игоревич
RU2533624C1
СПОСОБ ПОЛУЧЕНИЯ КОЛЬЦА СКОЛЬЖЕНИЯ ТОРЦЕВОГО УПЛОТНЕНИЯ 2016
  • Каченюк Максим Николаевич
  • Оглезнева Светлана Аркадьевна
  • Сомов Олег Васильевич
RU2639437C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОЙ КОМПОЗИЦИИ НА ОСНОВЕ КАРБОСИЛИЦИДА ТИТАНА 2010
  • Анциферов Владимир Никитович
  • Новиков Роман Сергеевич
  • Каченюк Максим Николаевич
RU2460706C2
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОЙ КОМПОЗИЦИИ НА ОСНОВЕ КАРБОСИЛИЦИДА ТИТАНА ДЛЯ ПЛАЗМЕННЫХ ПОКРЫТИЙ 2011
RU2458167C1

Реферат патента 2020 года Способ получения композиционного электроконтактного материала Cu-SiC

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и вакуумных дугогасительных камерах. Порошки меди, кремния и углерода подвергают совместной механической обработке в высокоэнергетической шаровой планетарной мельнице в атмосфере аргона при соотношении масс шаров и смеси порошков 10:1-20:1, скорости вращения планетарного диска планетарной мельницы 300-500 об/мин и продолжительности обработки 60-180 минут. Полученную смесь реакционных композиционных частиц подвергают искровому плазменному спеканию в камере в вакууме или в атмосфере инертного газа с пропусканием через спекаемую смесь импульсного электрического тока 500-5000 А под нагрузкой 30-50 МПа, при температуре 700-1000°C и продолжительности спекания 10-30 минут. Обеспечивается повышение твердости композиционного материала, снижение его пористости и удельного электросопротивления. 3 пр.

Формула изобретения RU 2 739 493 C1

Способ получения электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния, включающий механическую обработку смеси порошков меди, кремния и углерода в высокоэнергетической шаровой планетарной мельнице и последующее реакционное спекание полученной активированной смеси, отличающийся тем, что механическую обработку смеси порошков проводят в атмосфере аргона при соотношении масс шаров и смеси порошков 10:1-20:1, скорости вращения планетарного диска планетарной мельницы 300-500 об/мин и продолжительности обработки 60-180 минут с получением активированной смеси реакционных композиционных частиц, при этом реакционное спекание проводят в виде искрового плазменного спекания в камере в вакууме или в атмосфере инертного газа с пропусканием через спекаемую смесь импульсного электрического тока 500-5000 А под нагрузкой 30-50 МПа при температуре 700-1000°C и продолжительности спекания 10-30 мин.

Документы, цитированные в отчете о поиске Патент 2020 года RU2739493C1

СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ МЕДИ И КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, ИЗГОТОВЛЕННЫЙ ЭТИМ СПОСОБОМ 2001
  • Аксенов А.А.
  • Гершман И.С.
  • Кудашов Д.В.
  • Просвиряков А.С.
  • Портной В.К.
RU2202642C1
НАНОКОМПОЗИЦИОННЫЙ ЭЛЕКТРОКОНТАКТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Шкодич Наталья Федоровна
  • Вадченко Сергей Георгиевич
  • Кусков Кирилл Васильевич
  • Московских Дмитрий Олегович
  • Рогачев Александр Сергеевич
  • Мукасьян Александр Сергеевич
RU2597204C1
КОМПОЗИЦИОННЫЙ ЭЛЕКТРОКОНТАКТНЫЙ МАТЕРИАЛ НА ОСНОВЕ МЕДИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Зеер Галина Михайловна
  • Зеленкова Елена Геннадьевна
  • Ледяева Ольга Николаевна
  • Кожурин Алексей Николаевич
  • Кучинский Михаил Юрьевич
  • Шабуров Максим Андреевич
RU2525882C2
Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла 2016
  • Кусков Кирилл Васильевич
  • Московских Дмитрий Олегович
  • Шкодич Наталья Федоровна
  • Вадченко Сергей Георгиевич
  • Рогачев Александр Сергеевич
  • Мукасьян Александр Сергеевич
RU2645855C2
US 6844085 B2, 18.01.2005
CN 101885060 A, 17.11.2010
ВСЕСОЮЗНАЯ IПАШТ1ШЧЕХ(^^^'=НП:{АШ БИБЛИОТа.Ч.^^ I 0
SU349515A1
US 6024896 A1, 15.02.2000.

RU 2 739 493 C1

Авторы

Непапушев Андрей Александрович

Московских Дмитрий Олегович

Рогачев Александр Сергеевич

Даты

2020-12-24Публикация

2020-06-29Подача