Автоматизированная система отопления пассажирского вагона Российский патент 2021 года по МПК B61D27/00 

Описание патента на изобретение RU2740521C1

Изобретение относится к области транспортного машиностроения и предназначено для систем отопления железнодорожных, преимущественно пассажирских, вагонов.

Известна система отопления в железнодорожном вагоне (RU 2259291, B61D 27/00, 27.08.2005), состоящая из взаимосвязанных контуров циркуляции теплоносителя и содержащая водогрейный котел с подающими и возвратными трубопроводами отопления, проложенными вдоль боковых стен вагона, расширительный бак, водонагреватель, калорифер, циркуляционный насос и трубу-перемычку, соединяющую окончания возвратных трубопроводов отопления. Труба-перемычка выполнена в виде трубопровода, поднимающегося вверх возле боковой стены вагона, например, в туалетном помещении котловой стороны вагона, проходит над потолком коридора, опускается вниз в котельном отделении вагона и служит дополнительным источником обогрева туалетного помещения котловой стороны вагона.

Необходимость использования автономного циркуляционного насоса, увеличивающего количество конструктивных узлов данной системы, обуславливают низкую надежность всей системы отопления в железнодорожном вагоне, что является ее недостатком.

Известна автоматизированная система отопления пассажирского вагона (RU, 85426, B61D 27/00, 10.08.2009), выбранная в качестве прототипа, содержащая теплогенерирующий блок с первичной обмоткой переменного тока, выход которого с помощью напорных труб соединен с калорифером, который, в свою очередь, с помощью напорных труб соединен с входом расширителя, выход расширителя соединен с отопительными ветвями купейной и коридорной сторон с нагревательными трубами, отопительные ветви другими своими концами подсоединены к входу теплогенерирующего блока, в отопительные ветви встроены измерительные датчики, выходы которых соединены с входом сумматора, выход которого соединен с входом блока управления, а выход блока управления соединен с первичной обмоткой переменного тока теплогенерирующего блока.

Основным недостатком прототипа является то, что при механическом заклинивании короткозамкнутой вращающейся вторичной обмотки теплогенерирующего блока, либо при выходе из строя напорной лопасти, исчезнет или уменьшится напор. Это приведет к ухудшению охлаждения сетевой обмотки, которая может перегореть. Данный факт обуславливает низкую надежность работы автоматизированной системы отопления пассажирского вагона.

Задачей изобретения является повышение надежности работы автоматизированной системы отопления пассажирского вагона за счет изменении сопротивления материала проводника при его деформации.

Технический результат достигается тем, что в автоматизированной системе отопления пассажирского вагона, содержащей теплогенерирующий блок с первичной обмоткой переменного тока, выход которого с помощью напорных труб соединен с калорифером, который в свою очередь с помощью напорных труб соединен с входом расширителя, выход расширителя присоединен к отопительным ветвям купейной и коридорной сторон с нагревательными трубами, отопительные ветви другими своими концами подсоединены к входу теплогенерирующего блока, в отопительные ветви встроены измерительные датчики, выходы которых соединены с входом сумматора, выход которого соединен с входом блока управления, а выход блока управления соединен с теплогенерирующим блоком, на внутренней поверхности упорной торцевой крышки теплогенерирующего блока жестко закреплены тензодатчики, выходы которых соединены с дополнительным входом блока управления.

Принципиальная схема автоматизированной системы отопления пассажирского вагона показана на фиг.1, а на фиг.2 показан общий вид теплогенерирующего блока.

Автоматизированная система отопления пассажирского вагона содержит теплогенерирующий блок 1 (фиг.1), выполненный в виде управляемого теплогенерирующего электромеханического преобразователя (Ким К.К., Иванов С.Н. Теплогенерирующая электромеханическая система отопления пассажирского вагона // Наука и транспорт, 2008. С.41), который своим выходом 2 с помощью напорных труб 3 соединен с калорифером 4, который в свою очередь с помощью напорных труб 3 соединен с входом 5 расширителя 6, который предназначен для восприятия увеличивающегося при нагревании объема теплоносителя, например, воды. Выход 7 расширителя 6 соединен с отопительными ветвями 8 купейной и коридорной сторон с нагревательными трубами 9. Отопительные ветви 8 другими своими концами подсоединены к входу 10 теплогенерирующего блока 1. В отопительные ветви 8 встроены измерительные датчики 11, 12 (например, один из них измеряет температуру воздуха в вагоне, а второй - давление теплоносителя в отопительных ветвях 8), выходы 13, 14 которых соединены с входом 15 сумматора 16. Выход 17 сумматора 16 соединен с входом 18 блока управления 19. Блок управления 19, построенный на основе нейронной сети и/или нечеткой системы (RU 50741, Н05В6/10, F25B29/00; 20.01.2006), своим выходом 20, присоединен к первичной обмотке переменного тока, не показанной на чертежах, теплогенерирующего блока 2. На внутренней поверхности упорной торцевой крышки 21 (фиг.2) теплогенерирующего блока 2 жестко закреплены тензодатчики 22 и 23 (фиг.1 и 2), выходы 24 и 25 которых соединены с дополнительным входом 26 блока управления 19.

Теплогенерирующий блок 1 состоит из магнитопровода 27 (фиг.2) с размещенной на нем первичной обмоткой переменного тока, которая на чертеже не показана, и вращающейся короткозамкнутой вторичной обмотки 28, выполненной в виде несплошного полого цилиндра, на внутренней поверхности которого сформированы и жестко связаны с ней напорные лопасти 24. Вращающаяся короткозамкнутая вторичная обмотка 23 и магнитопровод 22 отделены теплоизолирующим слоем из антифрикционного неэлектропроводящего материала, выполняющего функцию одностороннего радиально-упорного подшипника скольжения и составляющего неразделимую часть с магнитопроводом 22 и первичной обмоткой переменного тока. Конструкционную целостность устройства обеспечивают две стянутые шпильками торцевые крышки: упорная 21 и фиксирующая 30, изготовленные, например, на базе стандартных подшипниковых щитов, входящих в комплект электродвигателей серии 4А(5А) или 4П. В упорную торцевую крышку 21 жестко закреплены тензодатчики 22 и 23.

Работа автоматизированной системы отопления осуществляется следующим образом.

При подключении теплогенерирующего блока 1, выполненного в виде управляемого теплогенерирующего электромеханического преобразователя, к сети переменного тока последний начинает нагревать теплоноситель, одновременно приводя его в движение. Теплоноситель по напорным трубам 3 поступает в калорифер 4, а затем в расширитель 6, в котором происходит компенсация увеличения объема теплоносителя, связанного с его нагревом. В калорифере 4 происходит нагрев воздуха, проходящего через калорифер 4. Из расширителя 6 теплоноситель поступает в отопительные ветви 8 купейной и коридорной сторон, где в нагревательных трубах 9 происходит теплообмен между теплоносителем и воздухом купе и коридоров. В процессе работы сигналы измерительных датчиков 11, 12, пропорциональные температуре воздуха в купе и давлению в отопительных ветвях 8, поступают на блок управления 19, содержащий оптимальный регулятор. В блоке управления 19 происходит сравнение текущих значений сигналов измерительных датчиков 11, 12 с их требуемыми значениями, которые вводятся в базу данных блока управления 19 заранее. После указанного сравнения бок управления 19 вырабатывает сигнал в виде управляющего напряжения и, который через выход 20 поступает на первичную обмотку переменного тока теплогенерирующего блока 1. В результате процесс нагрева происходит в соответствии с заданным алгоритмом управления, обеспечивающим требуемый температурный режим воздуха в пассажирском вагоне.

Во время нормальной работы теплогенерирующего блока 1 вращающаяся короткозамкнутая вторичная обмотка 28 (фиг.2) под действием напорных лопастей 29 осуществляет давление на упорную торцевую крышку 21, и тензодатчики 22 и 23 вырабатывают сигнал, который через их выводы 24 и 25 поступает на дополнительный вход 26 управляющего устройства 19.

Если давление вращающейся короткозамкнутой вторичной обмотки 28 либо исчезает, либо уменьшается, уменьшается и значение сигнала с тензодатчиков 22 и 23, что ведет к срабатыванию блока управления 19, которое отключает питание теплогенерирующего блока 1 (фиг.1).

Как можно заметить заявляемая автоматизированная система отопления пассажирского вагона автоматически прекращает свою работу при уменьшении напора теплоагента, что предотвращает перегрев первичной обмотки переменного тока теплогенерирующего блока 1, т.е. повышает надежность ее работы.

Похожие патенты RU2740521C1

название год авторы номер документа
СУБОПТИМАЛЬНАЯ ЭНЕРГЕТИЧЕСКАЯ СИСТЕМА 2016
  • Амосов Олег Семенович
  • Иванов Сергей Николаевич
  • Иванов Юрий Сергеевич
  • Баена Светлана Геннадьевна
  • Со Хтайк
RU2626798C1
ОТОПИТЕЛЬНЫЙ КОНТУР ДЛЯ ПОМЕЩЕНИЙ ВАГОНА 2003
  • Николаев И.Б.
  • Рябов Ю.В.
  • Гришутин А.Ю.
  • Резников А.Г.
  • Шустер А.А.
RU2238862C1
СИСТЕМА ОТОПЛЕНИЯ В ЖЕЛЕЗНОДОРОЖНОМ ВАГОНЕ 2003
  • Кипка Владимир Васильевич
  • Приходько Владимир Иванович
  • Прохоров Владимир Михайлович
  • Коробка Борис Афанасьевич
  • Шкабров Олег Анатольевич
  • Назаренко Леонид Иванович
  • Солдатов Владимир Александрович
  • Ермаков Виталий Викторович
  • Маначинский Олег Владимирович
  • Игнатов Георгий Сергеевич
RU2259291C1
Система микроклимата и виброизоляции вагона восстановительного поезда 2022
  • Денисов Олег Викторович
  • Бараниченко Вадим Владимирович
  • Яценко Олег Вадимович
  • Денисов Данила Олегович
RU2799148C1
СИСТЕМА ВОДЯНОГО ОТОПЛЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА 1994
  • Коршунов А.А.
RU2083404C1
СИСТЕМА ТЕПЛООБЕСПЕЧЕНИЯ ВАГОНА ЖЕЛЕЗНОДОРОЖНОГО 2008
  • Исаев Сергей Константинович
  • Исаев Петр Сергеевич
RU2376178C1
УСТРОЙСТВО ДЛЯ ЦЕНТРАЛИЗОВАННОГО ЭЛЕКТРООТОПЛЕНИЯ ПАССАЖИРСКИХ ПОЕЗДОВ 1973
SU419424A1
КУЗОВ ТРАНСПОРТНОГО СРЕДСТВА 2001
  • Жариков В.А.
  • Закатов С.П.
  • Гаранов С.А.
  • Коковихина М.А.
  • Конюхов А.Д.
  • Подлитов Н.И.
  • Разаренова Л.В.
  • Родионов И.А.
  • Саверин В.Н.
RU2201356C2
СИСТЕМА ОТОПЛЕНИЯ ПАССАЖИРСКОГО ЖЕЛЕЗНОДОРОЖНОГО ВАГОНА И ТЕПЛОГЕНЕРАТОР 2002
  • Тимкин Л.П.
  • Жасан В.С.
  • Мурашко В.М.
  • Крочак Л.З.
RU2233757C1
СИСТЕМА ОТОПЛЕНИЯ ЗДАНИЯ 2013
  • Лельков Виктор Георгиевич
  • Лельков Алексей Викторович
RU2552234C2

Иллюстрации к изобретению RU 2 740 521 C1

Реферат патента 2021 года Автоматизированная система отопления пассажирского вагона

Изобретение относится к автоматизированной системе отопления пассажирского вагона. Система отопления содержит: теплогенерирующий блок с первичной обмоткой переменного тока, выход которого с помощью напорных труб соединен с калорифером. Калорифер с помощью напорных труб соединен с входом расширителя. Выход расширителя присоединен к отопительным ветвям купейной и коридорной сторон с нагревательными трубами. Отопительные ветви другими своими концами подсоединены к входу теплогенерирующего блока. В отопительные ветви встроены измерительные датчики, выходы которых соединены с входом сумматора. Выход сумматора соединен с входом блока управления. Выход блока управления соединен с теплогенерирующим блоком. На внутренней поверхности упорной торцевой крышки теплогенерирующего блока жестко закреплены тензодатчики, выходы которых соединены с дополнительным входом блока управления. Достигается повышение надежности автоматизированной системы отопления пассажирского вагона. 2 ил.

Формула изобретения RU 2 740 521 C1

Автоматизированная система отопления пассажирского вагона, содержащая теплогенерирующий блок с первичной обмоткой переменного тока, выход которого с помощью напорных труб соединен с калорифером, который в свою очередь с помощью напорных труб соединен с входом расширителя, выход расширителя присоединен к отопительным ветвям купейной и коридорной сторон с нагревательными трубами, отопительные ветви другими своими концами подсоединены к входу теплогенерирующего блока, в отопительные ветви встроены измерительные датчики, выходы которых соединены с входом сумматора, выход которого соединен с входом блока управления, а выход блока управления соединен с теплогенерирующим блоком, отличающаяся тем, что на внутренней поверхности упорной торцевой крышки теплогенерирующего блока жестко закреплены тензодатчики, выходы которых соединены с дополнительным входом блока управления.

Документы, цитированные в отчете о поиске Патент 2021 года RU2740521C1

RU 2003137013 A, 10.06.2005
ПРИВОД К ШНЕКОВОЙ ЦЕНТРИФУГЕ НЕПРЕРЫВНОГО ДЕЙСТВИЯ 1949
  • Сухина В.Я.
SU85426A1
Приспособление для остановки трактора при обрыве прицепных орудии 1935
  • Бурьяненко Н.А.
  • Сонин Ф.Г.
SU50741A1
JP 2012151975 A, 09.08.2012
FR 2885580 A1, 17.11.2006.

RU 2 740 521 C1

Авторы

Ким Константин Константинович

Иванов Сергей Николаевич

Хисматулин Марат Ильдусович

Даты

2021-01-15Публикация

2020-07-30Подача