Область техники
Изобретение относится к области медицины, а именно онкологии и клинической биохимии. Изобретение может быть использовано для ранней диагностики почечно-клеточной карциномы по наличию зрительного аррестина 1 в сыворотке крови пациентов с применением иммунохимических методов детекции.
Уровень техники
Почечно-клеточная карцинома (ПКК) - вторая наиболее встречаемая злокачественная патология среди уронефрологических онкологических заболеваний (R.L. Siegel, K.D. Miller, A. Jemal, Cancer Statistics, 2017, CA: a cancer journal for clinicians, 67 (2017) 7-30 DOI: 10.3322/caac.21387). Она характеризуется как агрессивный и инвазивный рак с высокой частотой метастазирования. Вдобавок, у ПКК нет специфических симптомов, поэтому она обычно диагностируется случайно на поздней стадии во время диспансеризации или других рутинных исследований по поводу другой патологии. Примерно у 40% пациентов с диагностированной локальной ПКК в итоге развиваются метастазы (A.J. Wein, L.R. Kavoussi, M.F. Campbell, Campbell-Walsh urology / editor-in-chief, Alan J. Wein; [editors, Louis R. Kavoussi … et al.], 10th ed., Elsevier Saunders, Philadelphia, PA, 2012). Смертность при ПКК довольно высокая: пятилетняя выживаемость при I стадии ПКК 80-95%, примерно 80% при II стадии ПКК, 60% при III стадии ПКК и менее 10% при IV стадии (Е. Jonasch, J. Gao, W.K. Rathmell, Renal cell carcinoma, Bmj, 349 (2014) g4797 DOI: 10.1136/bmj.g4797). Более того, опухолевая инвазия на I-II стадиях ПКК ассоциируется с неблагоприятным прогнозом - пятилетняя выживаемость у таких пациентов составляет менее 60%. Что касается метастатической ПКК, прогноз практически всегда фатальный - десятилетняя выживаемость менее 5% (A.J. Wein, L.R. Kavoussi, M.F. Campbell, Campbell-Walsh urology / editor-in-chief, Alan J. Wein; [editors, Louis R. Kavoussi … et al.], 10th ed., Elsevier Saunders, Philadelphia, PA, 2012). В случае ПКК местное хирургическое лечение является золотым стандартом. Установленная практика при данной патологии - циторедуктивная нефректомия с последующей системной медикаментозной терапией.
Как и при других видах онкологических заболеваний, ранняя диагностика и своевременное начало лечения ПКК приводят к благоприятным исходам заболевания. Тем не менее в настоящее время не существует методов специфической ранней диагностики ПКК. Обнаружение биомаркеров в биологических жидкостях или в самой опухоли может быть достаточно информативным. Несмотря на это, гетерогенность опухоли и сложность процедуры биопсии на ранней стадии заболевания являются ограничивающими факторами. С другой стороны, менее инвазивной процедурой является взятие крови для обнаружения биомаркеров. Однако серологические биомаркеры подвергаются деградации циркулирующими в крови протеазами и нуклеазами, что, таким образом, уменьшает вероятность их обнаружения и требует применения более чувствительных методов их детекции (Т.С. Ngo, C.G. Wood, J.A. Karam, Biomarkers of renal cell carcinoma, Urologic oncology, 32 (2014) 243-251 DOI: 10.1016/j.urolonc.2013.07.011).
В настоящее время наиболее часто диагностические мероприятия по поводу ПКК начинают проводить после случайного обнаружения объемного образования в почке рутинными методами УЗИ, КТ, МРТ. Проведенная впоследствии процедура биопсии позволяет поставить диагноз ПКК. Также для диагностики ПКК используются такие биомаркеры как vimentin, CK-7, CK-20, CD 20, MUC1, AMACR и др. (J.R. Srigley, В. Delahunt, J.N. Eble, L. Egevad, J.I. Epstein, D. Grignon, O. Hes, H. Moch, R. Montironi, S.K. Tickoo, M. Zhou, P. Argani, I.R.T. Panel, The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia, The American journal of surgical pathology, 37 (2013) 1469-1489 DOI: 10.1097/PAS.0b013e318299f2d1). Однако все перечисленные биомаркеры являются диагностическими, т.е. используются для уточнения подтипа уже установленного диагноза почечно-клеточная карцинома. Более того, перечисленные биомаркеры не детектируются поодиночке, но исследуются в панели, т.н. профили экспрессии. Таким образом, в настоящее время не существует биомаркера, подходящего для ранней (скрининговой) диагностики ПКК.
Наиболее близким к предлагаемому в настоящей заявке способу является детекция белков Tu М2-PK, VEGF, TATI, СА9 (М.О. Golovastova, D.O. Korolev, L.V. Tsoy, V.A. Varshavsky, W.H. Xu, A.Z. Vinarov, E.Y. Zernii, P.P. Philippov, A.A. Zamyatnin, Jr., Biomarkers of Renal Tumors: the Current State and Clinical Perspectives, Current urology reports, 18 (2017) 3 DOI: 10.1007/s11934-017-0655-1), характеризующихся различной специфичностью при разных видах опухолей.
Следует отметить, что в случае с ПКК редко наблюдается экспрессия хорошо изученных раково-зародышевых антигенов, таких как RAGE-1, MAGE-A4, SAGE, NY-ESO-1 (M.J. Scanlan, А.О. Gure, A.A. Jungbluth, L.J. Old, Y.T. Chen, Cancer/testis antigens: an expanding family of targets for cancer immunotherapy, Immunological reviews, 188 (2002) 22-32; N. Soga, Y. Hori, K. Yamakado, H. Ikeda, N. Imai, S. Kageyama, K. Nakase, A. Yuta, N. Hayashi, H. Shiku, Y. Sugimura, Limited expression of cancer-testis antigens in renal cell carcinoma patients, Molecular and clinical oncology, 1 (2013) 326-330 DOI: 10.3892/mco.2012.40). Тем не менее существуют другие белки, экспрессирующиеся в норме в иммунопривилегированных тканях, таких как центральная нервная система и сетчатка глаза, которые могут также аберрантно экспрессироваться в опухолевых клетках вследствие злокачественной трансформации. Такие белки классифицируются в две группы в зависимости от их происхождения: онконевральные и раково-сетчаточные антигены (PCA).
Несколько РСА были классифицированы как опухоле-ассоциированные антигены (ОАА) (A.V. Bazhin, D. Schadendorf, N. Willner, С. De Smet, A. Heinzelmann, N.K. Tikhomirova, V. Umansky, P.P. Philippov, S.B. Eichmuller, Photoreceptor proteins as cancer-retina antigens, International journal of cancer, 120 (2007) 1268-1276 DOI: 10.1002/ijc.22458). Многие из них экспрессируются в нейронах сетчатки глаза, где они участвуют в зрительной трансдукции. Возможность продукции антител к сетчаточным белкам у пациентов с паранеопластическим синдромом, таким как меланома-ассоциированная ретинопатия (MAP), показывает возможность аберрантной экспрессии сетчаточных белков в соответствующей опухоли (А.Н. Milam, J.C. Saari, S.G. Jacobson, W.P. Lubinski, L.G. Feun, K.R. Alexander, Autoantibodies against retinal bipolar cells in cutaneous melanoma-associated retinopathy, Investigative ophthalmology & visual science, 34 (1993) 91-100; M.J. Potter, C.E. Thirkill, O.M. Dam, A.S. Lee, A.H. Milam, Clinical and immunocytochemical findings in a case of melanoma-associated retinopathy, Ophthalmology, 106 (1999) 2121-2125 DOI: 10.1016/S0161-6420(99)90493-1). Было показано, что клетки меланомы могут экспрессировать такие РСА как родопсин, трансдуцин, cGMP-фосфодиэстеразу 6, родопсин киназу, рековерин и аррестин 1 (A.V. Bazhin, D. Schadendorf, N. Willner, С. De Smet, A. Heinzelmann, N.K. Tikhomirova, V. Umansky, P.P. Philippov, S.B. Eichmuller, Photoreceptor proteins as cancer-retina antigens, International journal of cancer, 120 (2007) 1268-1276 DOI: 10.1002/ijc.22458). Таким образом, по аналогии с меланома-ассоциированной ретинопатией, экспрессия РСА в клетках опухоли при ПКК может привести к значительному повышению уровня указанных антигенов в крови. Это может быть использовано для ранней диагностики ПКК. При этом в уровне техники отсутствуют сведения, раскрывающие возможность использования зрительного аррестина - аррестина 1 как одного из РСА, в качестве биомаркера для ранней диагностики ПКК. Известно, что в состав всех белков-аррестинов, включенных в так называемый аррестиновый клан, входит аррестиновый домен, который является уникальным предком всех аррестинов. Клан состоит из двух семейств: семейство аррестинов и так называемое семейство Vps26-родственных белков, которые также называются α-аррестины, или arrestin-domain-containing proteins (ARRDCs; белки, содержащие аррестиновый домен) для обозначения соответствующих белков у млекопитающих (С.Е. Alvarez, On the origins of arrestin and rhodopsin, BMC evolutionary biology, 8 (2008) 222 DOI: 10.1186/1471-2148-8-222). Семейство аррестинов состоит из 4 белков, которые в свою очередь подразделяются еще на 2 группы: зрительные аррестины, которые включают в себя аррестин 1 (S-antigen, SAG, S-arrestin, аррестин палочек, зрительный аррестин) и аррестин 4 (X-arrestin, ARR3, аррестин колбочек), и β-аррестины, которые включают в себя аррестин 2 (β-аррестин или β-аррестин-1, ARRB1) и аррестин 3 (β-аррестин-2, ARRB2) (E.V. Gurevich, V.V. Gurevich, Arrestins: ubiquitous regulators of cellular signaling pathways, Genome biology, 7 (2006) 236 DOI: 10.1186/gb-2006-7-9-236). В свою очередь, семейство Vps26-родственных белков или α-аррестинов у млекопитающих состоит из 6 белков: ARRDC1, ARRDC2, ARRDC3/TLIMP, ARRDC4, ARRDC5 и TXNIP/TBP-2 (L. Puca, С. Brou, Alpha-arrestins - new players in Notch and GPCR signaling pathways in mammals, Journal of cell science, 127 (2014) 1359-1367 DOI: 10.1242/jcs.142539). Полная классификация аррестинового клана для млекопитающих приведена в табл. 1.
Несмотря на то, что открытый первым аррестин 1 был обнаружен в клетках сетчатки глаза, впоследствии выяснилось, что белки аррестинового семейства встречаются повсеместно. Любая животная клетка экспрессирует как минимум один тип аррестина (E.V. Gurevich, V.V. Gurevich, Arrestins: ubiquitous regulators of cellular signaling pathways, Genome biology, 7 (2006) 236 DOI: 10.1186/gb-2006-7-9-236). Однако существует два исключения - это зрительные аррестины. Хотя те или иные β- и α-аррестины постоянно присутствуют в протеоме всех живых клеток, аррестин 1 и аррестин 4 имеют строго специфическую локализацию в организме человека - клетки сетчатки глаза и шишковидной железы. Экспрессия аррестина 1 была обнаружена в клетках меланомы у пациентов с MAP, что позволяет отнести аррестин 1 к РСА.
Авторами настоящего изобретения было выявлено, что помимо повсеместно встречаемых аррестинов в опухолях почки с высокой частотой встречается экспрессия зрительного аррестина 1. Таким образом, было предложено использовать феномен аберрантной экспрессии аррестина 1 при ранней диагностике ПКК.
Раскрытие изобретения
Технической проблемой, решаемой настоящим изобретением, является разработка малоинвазивного способа ранней диагностики ПКК.
Техническим результатом заявляемого изобретения является возможность определения наличия белка аррестина 1 в сыворотке крови пациентов с предполагаемой патологией иммунохимическим методом детекции.
Поставленная задача решается способом диагностики почечно-клеточной карциномы, согласно которому образец сыворотки крови пациента прокачивают через микрочип на основе мембраны из регенерированной целлюлозы с иммобилизованными первичными моноклональными антителами к аррестину 1 в течение времени, обеспечивающем связывание аррестина 1 с моноклональными антителами, после чего через микрочип в магнитном поле пропускают суперпарамагнитные частицы, модифицированные вторичными антителами к аррестину 1, и фиксируют появление светящихся активных зон с антителами к аррестину 1 со связавшимися суперпарамагнитными частицами, определяют значение сигнала, соответствующее количеству связанных магнитных частиц на 1 мм2 в каждой активной зоне микрочипа и значение фонового сигнала, соответствующее количеству магнитных частиц на 1 мм2 вне активной зоны микрочипа и при превышении сигнала, соответствующего количеству частиц в активной зоне, над фоновым значением сигнала не менее чем на два стандартных отклонения фонового сигнала, делают вывод о наличии в образце сыворотки крови белка зрительного аррестина 1 и диагностируют почечно-клеточную карциному.
Краткое описание чертежей
На фиг. 1 приведен пример результатов иммуноанализа образцов сывороток, полученных от пациентов с ПКК.
На фиг. 2 приведен результат иммуноанализа положительного контроля: рекомбинантный зрительный аррестин 1 (1 мкг/мл), окрашенный в сэндвич-анализе с помощью козьих моноклональных антител к зрительному аррестину 1 на микрочипе и поликлональных мышиных антител на магнитных частицах.
На фиг. 3 приведен пример результатов иммуноанализа отрицательного контроля: сыворотки, полученной от здорового человека.
Осуществление изобретения
В рамках проведенных в Институте молекулярной медицины ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет) исследований было показано, что РСА аррестин 1 довольно часто может аберрантно экспрессироваться в клетках опухоли почки пациентов с ПКК. Для определения наличия экспрессии аррестина 1 проводилась иммуногистохимия образцов опухоли почки пациентов с диагностированной ПКК. В результате, в 17 образцах из 29, что соответствует 58.6%, была обнаружена аберрантная экспрессия аррестина 1 при ПКК. В табл. 2 представлены данные проведенного исследования.
Настоящее изобретение поясняется конкретным примером выполнения, который наглядно демонстрирует возможность достижения требуемого технического результата, но при этом не ограничивает заявленный объем притязаний.
Наличие аррестина 1 в сыворотке крови определялось с помощью высокочувствительного иммуноанализа на микрочипах с иммобилизованными первичными антителами к аррестину 1, использующего на стадии выявления антигена сканирование поверхности магнитными частицами, покрытыми вторичными антителами, при приложении магнитного поля. Такой «активный» способ детекции позволяет преодолеть диффузионный барьер и значительно повысить чувствительность и уменьшить время анализа. Предварительно на мембране из регенерированной целлюлозы (диализной мембране) методом электрораспыления изготавливаются микрочипы с моноклональными антителами к аррестину 1 (Shlyapnikov Y.M., Shlyapnikova Е.А., Simonova М.А., Shepelyakovskaya A.O., Brovko F.A., Komaleva R.L., Grishin E.V., Morozov V.N. Rapid simultaneous ultrasensitive immunodetection of five bacterial toxins. Anal. Chem. 2012. V. 84(13), 5596-5603). Ранее показано, что микрочипы, хранящиеся в 50%-ном глицерине при -20°С, сохраняют работоспособность, по крайней мере, в течение месяца.
Заявляемый способ ранней диагностики ПКК может быть осуществлен следующим образом. У пациента производят забор венозной крови натощак с утра. Далее, после сворачивания цельную кровь центрифугируют, отбирают сыворотку, которую в дальнейшем используют для анализа. Возможно замораживание образцов сыворотки при -80°С для хранения и дальнейшего использования. Иммуноанализ проводят в проточной ячейке с закрепленным микрочипом, помещенной под обычный медицинский микроскоп с темнопольным осветителем. Конструкция ячейки описана в (Morozov V.N., Morozova T.Y. Active bead-linked immunoassay on protein microarrays. Anal. Chim. Acta. 2006, 564, 40-52). На первом этапе анализа 300 мкл образца сыворотки крови прокачивают через ячейку в течение 30 минут для связывания аррестина 1 с первичными моноклональными антителами на микрочипе. Затем под ячейку помещают магнит и пропускают через ячейку 5×10-4% (по массе) суспензию суперпарамагнитных частиц (Dynabeads Myone, диаметр 1 мкм), которые заранее модифицируют вторичными поликлональными антителами к аррестину 1 (по методике, описанной в Morozov V.N., Morozova T.Y. Active bead-linked immunoassay on protein microarrays. Anal. Chim. Acta. 2006, 564, 40-52) в стандартном фосфатном буфере с добавкой 1% бычьего сывороточного альбумина. Магнитное поле прижимает частицы к микрочипу и вынуждает их сканировать поверхность, облегчая процесс связывания антигена с антителом. Как правило, эта процедура занимает около 1 минуты. Поскольку одна связь антиген-антитело способна удерживать магнитную частицу, отдельные молекулы аналита на поверхности микрочипа могут быть помечены и обнаружены при сканировании. Изображения микрочипов получают с помощью USB-камеры. Сигнал (поверхностная плотность связанных магнитных частиц) в зоне, где иммобилизованы антитела, и фоновый сигнал (поверхностная плотность частиц вне этой зоны) определяют вручную или с помощью программного обеспечения, подсчитывающего яркие пятна, соответствующие размеру магнитных частиц на темном фоне. Детальное описание алгоритма работы программного обеспечения дано в (Shlyapnikov Y.M., Shlyapnikova Е.А., Morozov V.N. Carboxymethylcellulose film as a substrate for microarray fabrication. Anal. Chem. 2014. V. 86(4), 2082-2089). Далее, no результатам детекции делают вывод о наличии или отсутствии аррестина 1 в сыворотке пациента: образец классифицируют как положительный, если количество связавшихся магнитных частиц в активной зоне микрочипа превышает фон (количество частиц вне активной зоны) не менее чем на 2 стандартных отклонения фонового сигнала (Shlyapnikov Y.M., Shlyapnikova Е.А., Morozov V.N. Carboxymethylcellulose film as a substrate for microarray fabrication. Anal. Chem. 2014. V. 86(4), 2082-2089). В противном случае образец сыворотки классифицируют как отрицательный и делают вывод об отсутствии аррестина 1 в сыворотке пациента.
Пример 1. Через ячейку с микрочипом, на котором иммобилизованы моноклональные антитела к аррестину 1, прокачивали 300 мкл сыворотки пациента, больного РП, со скоростью 10 мкл/мин с помощью шприцевого дозатора SK500I (Китай). После этого через ячейку со скоростью 5-6 мкл/мин пропускали суперпарамагнитные частицы, модифицированные вторичными антителами к аррестину 1, суспендированные в концентрации 5×10-4% (по массе) в стандартном фосфатном буфере с добавкой 0,1% Твин 20 и 1% бычьего сывороточного альбумин в течение 2 минут. Темнопольное изображение микрочипа фиксировалось цифровой камерой, на котором фиксировалось появление светящихся зон с антителами к аррестину 1 со связавшимися магнитными частицами. Количество связанных магнитных частиц в каждой зоне определяли с помощью программного обеспечения, описанного в (Shlyapnikov Y.M., Shlyapnikova Е.А., Morozov V.N. Carboxymethylcellulose film as a substrate for microarray fabrication. Anal. Chem. 2014. V. 86(4), 2082-2089), подсчитывающего яркие пятна определенного размера на темном фоне. Эксперимент повторили три раза с образцами сыворотки, полученными от трех различных больных. Значения сигнала (число магнитных частиц на 1 мм2 в активной зоне микрочипа) составили: 1350, 890, 1180. Соответствующие значения фонового сигнала (число магнитных частиц на 1 мм2 вне активной зоны микрочипа) составили: 42, 28, 34; значения стандартного отклонения фонового сигнала составили: 30, 21, 27. Для всех трех образцов сигнал превосходит фон +2 стандартных отклонения фона, таким образом, результат анализа всех трех образцов был признан положительным. Пример изображения микрочипа со связанными магнитными частицами приведен на фиг. 1.
Пример 2. Положительный контроль
Через ячейку с микрочипом, на котором иммобилизованы моноклональные антитела к аррестину 1, прокачивали 300 мкл раствора рекомбинантного аррестина 1 с концентрацией 1 мкг/мл в стандартном фосфатном буфере с добавкой 0,1% Твин 20 и 1% бычьего сывороточного альбумина со скоростью 10 мкл/мин с помощью шприцевого дозатора SK500I. После этого через ячейку со скоростью 5-6 мкл/мин пропускали суперпарамагнитные частицы, модифицированные вторичными антителами к аррестину 1, в концентрации 5×10-4% (по массе) в стандартном фосфатном буфере с добавкой 1% бычьего сывороточного альбумина. Время прокачивания составляло 1-2 минуты. Темнопольное изображение микрочипа фиксировалось цифровой камерой, на котором фиксировалось появление светящихся зон с антителами к аррестину 1 со связавшимися магнитными частицами. Количество связанных магнитных частиц в каждой зоне определяли с помощью программного обеспечения, подсчитывающего яркие пятна определенного размера на темном фоне. Значение сигнала (число магнитных частиц на 1 мм2 в активной зоне микрочипа) составило: 4210. Соответствующее значение фонового сигнала (число магнитных частиц на 1 мм2 вне активной зоне микрочипа) составило: 17; значение стандартного отклонения фонового сигнала составило: 13. Сигнал превосходит фон +2 стандартных отклонения фона, таким образом, результат анализа был признан положительным. Изображение микрочипа со связанными магнитными частицами приведено на фиг. 2.
Пример 3. Отрицательный контроль
Через ячейку с микрочипом, на котором иммобилизованы моноклональные антитела к аррестину 1, прокачивали 300 мкл сыворотки здорового человека без признаков онкологической патологии со скоростью 10 мкл/мин с помощью шприцевого дозатора SK500I. После этого через ячейку со скоростью 5-6 мкл/мин пропускали суперпарамагнитные частицы, модифицированные вторичными антителами к аррестину 1, в концентрации 5×10-4% (по массе) в стандартном фосфатном буфере с добавкой 1% бычьего сывороточного альбумина в течение 1-2 минут. Темнопольное изображение микрочипа фиксировалось цифровой камерой, на котором фиксировалось появление светящихся зон с антителами к аррестину 1 со связавшимися магнитными частицами. Количество связанных магнитных частиц в каждой зоне определяли с помощью программного обеспечения, подсчитывающего яркие пятна определенного размера на темном фоне. Эксперимент повторили два раза с образцами сыворотки, полученными от двух здоровых добровольцев. Значения сигнала (число магнитных частиц на 1 мм2 в активной зоне микрочипа) составили: 46, 61. Соответствующие значения фонового сигнала (число магнитных частиц на 1 мм2 вне активной зоне микрочипа) составили: 20, 47; значения стандартного отклонения фонового сигнала составили: 19, 35. Для обоих образцов сигнал не превосходит фон + 2 стандартных отклонения фона, таким образом, результат анализа обоих образцов был признан отрицательным. Таким образом сделан вывод об отсутствии в сыворотке крови аррестина 1. Пример изображения микрочипа со связанными магнитными частицами приведен на фиг. 3.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАННЕЙ ДИАГНОСТИКИ ПОЧЕЧНО-КЛЕТОЧНОЙ КАРЦИНОМЫ ПО НАЛИЧИЮ АНТИТЕЛ К ЗРИТЕЛЬНОМУ АРРЕСТИНУ | 2018 |
|
RU2707884C1 |
Способ диагностики почечно-клеточной карциномы по наличию зрительных белков аррестина и рековерина в моче | 2022 |
|
RU2805811C1 |
Способ уточняющей лабораторной диагностики почечно-клеточного рака | 2021 |
|
RU2766295C2 |
Способ диагностики повреждения почек у детей с пузырно-мочеточниковым рефлюксом | 2023 |
|
RU2814399C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ ЭФФЕКТИВНОСТИ ЛЕЧЕНИЯ РЕВМАТОИДНОГО АРТРИТА ПРЕПАРАТОМ ОЛОКИЗУМАБ С ИСПОЛЬЗОВАНИЕМ ЭПИГЕНЕТИЧЕСКИХ МАРКЕРОВ | 2020 |
|
RU2749248C1 |
СИСТЕМА И СПОСОБ ДЛЯ СКРИНИНГОВОГО ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ НАЛИЧИЯ КОЛОРЕКТАЛЬНОГО РАКА | 2018 |
|
RU2698854C1 |
СПОСОБ СКРИНИНГОВОГО ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ НАЛИЧИЯ РАКА МОЧЕВОГО ПУЗЫРЯ | 2019 |
|
RU2718284C1 |
СПОСОБ СКРИНИНГОВОГО ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ НАЛИЧИЯ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ | 2019 |
|
RU2718272C1 |
СПОСОБ РАННЕЙ ДИАГНОСТИКИ РАКА ЛЕГКОГО | 2018 |
|
RU2697971C1 |
ПРИМЕНЕНИЕ ПЕПТИДНОГО СОЕДИНЕНИЯ ДЛЯ ИНДУКЦИИ АПОПТОЗА В ОПУХОЛЕВОЙ КЛЕТКЕ | 2022 |
|
RU2796104C1 |
Изобретение относится к области медицины, в частности к онкологии и клинической биохимии, и предназначено для диагностики почечно-клеточной карциномы. Образец сыворотки крови пациента прокачивают через микрочип на основе мембраны из регенерированной целлюлозы с иммобилизованными первичными моноклональными антителами к аррестину 1 в течение времени, обеспечивающего связывание аррестина 1 с моноклональными антителами. После этого через микрочип в магнитном поле пропускают суперпарамагнитные частицы, модифицированные вторичными антителами к аррестину 1, и фиксируют появление светящихся активных зон с антителами к аррестину 1 со связавшимися суперпарамагнитными частицами. При превышении сигнала, соответствующего количеству частиц в активной зоне, над фоновым значением сигнала не менее чем на два стандартных отклонения фонового сигнала, делают вывод о наличии в образце сыворотки крови белка зрительного аррестина 1 и диагностируют почечно-клеточную карциному. Изобретение обеспечивает возможность определения наличия белка аррестина 1 в сыворотке крови пациентов с предполагаемой патологией. 2 табл., 3 пр., 3 ил.
Способ диагностики почечно-клеточной карциномы, характеризующийся тем, что образец сыворотки крови пациента прокачивают через микрочип на основе мембраны из регенерированной целлюлозы с иммобилизованными первичными моноклональными антителами к аррестину 1 в течение времени, обеспечивающего связывание аррестина 1 с моноклональными антителами, после чего через микрочип в магнитном поле пропускают суперпарамагнитные частицы, модифицированные вторичными антителами к аррестину 1, и фиксируют появление светящихся активных зон с антителами к аррестину 1 со связавшимися суперпарамагнитными частицами, определяют значение сигнала, соответствующее количеству связанных магнитных частиц на 1 мм2 в каждой активной зоне микрочипа, и значение фонового сигнала, соответствующее количеству магнитных частиц на 1 мм2 вне активной зоны микрочипа, и при превышении сигнала, соответствующего количеству частиц в активной зоне, над фоновым значением сигнала не менее чем на два стандартных отклонения фонового сигнала, делают вывод о наличии в образце сыворотки крови белка зрительного аррестина 1 и диагностируют почечно-клеточную карциному.
СПОСОБ ПРОГНОЗИРОВАНИЯ РИСКА РАЗВИТИЯ АДЕНОКАРЦИНОМЫ ЖЕЛУДКА ПРИ ХРОНИЧЕСКИХ ПРОЦЕССАХ ЯЗВООБРАЗОВАНИЯ ОРГАНА | 2016 |
|
RU2612021C1 |
KR 1020190133559 A, 03.12.2019 | |||
BALDIN A.V | |||
et al | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Biochimie | |||
Станок для придания концам круглых радиаторных трубок шестигранного сечения | 1924 |
|
SU2019A1 |
GOLOVASTOVA M.O | |||
et al | |||
Biomarkers of Renal Tumors: the Current State and Clinical Perspectives | |||
Curr Urol Rep | |||
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами | 1924 |
|
SU2017A1 |
Авторы
Даты
2021-01-22—Публикация
2020-02-28—Подача