Способ удаления индикаторной проникающей жидкости с поверхности стеклокерамических изделий с использованием ультразвуковых волн Российский патент 2021 года по МПК B08B3/12 G01N21/91 

Описание патента на изобретение RU2749343C1

Изобретение относится к области неразрушающего контроля изделий из беспористых (П стеклокерамических материалов, а именно цветной капиллярной дефектоскопии на наличие поверхностных несплошностей и служит для исключения избыточных тепловых нагрузок на хрупкие изделия, снижения трудозатрат и энергозатрат при проведении контроля.

Существует необходимость проведения неразрушающего контроля изделий из беспористых стеклокерамических материалов, так как наличие в них несплошностей в виде трещин и раковин приводит к потере работоспособности изделий и всех конструкции, в состав которых они входят. Цветная капиллярная дефектоскопия позволяет обнаруживать поверхностные несплошности.

При выполнении цветной капиллярной дефектоскопии на поверхность радиопрозрачных оболочечных конструкций из стеклокерамики наносится цветная (красного цвета) проникающая жидкость - пенетрант. После выполнения контроля необходимо удалить цветной фон с поверхности контролируемого изделия из-за его негативного влияния на другие технологические процессы и внешний вид изделий.

Известен способ удаления пенетранта, после его взаимодействия с проявителем, путем выжигания пенетранта с поверхности контролируемого изделия (ГОСТ 24522-80. Контроль неразрушающий капиллярный. Термины и определения).

Однако выжигание требует отработку режима температурного воздействия на хрупкое стеклокерамическое изделие. Кроме того, технологический процесс выжигания трудоемок и энергозатратен.

Наиболее близким к предлагаемому способу очистки поверхности стеклокерамических изделий от пенетранта является способ ультразвуковой очистки изделий (Келлер О.К., Кратых Г.С., Любляницкий Г.Д. Ультразвуковая очистка. - Л.: Машиностроение, 1977), заключающийся в воздействии на изделие моющей жидкости, в которой с помощью ультразвукового устройства возбуждают ультразвуковые волны.

Недостатком этого способа является невозможность полного удаления пенетранта, находящегося в порах стеклокерамического изделия. Результаты экспериментов показали, что часть пенетранта остается в порах и поверхность стеклокерамического изделия полностью не обесцвечивается.

Техническим результатом предлагаемого изобретения является повышение эффективности удаления пенетранта с поверхности стеклокерамических изделий после проведения цветной капиллярной дефектоскопии без их термической обработки (выжигания).

Указанный технический результат достигается тем, что предложен способ удаления индикаторной проникающей жидкости с поверхности стеклокерамических изделий с использованием ультразвуковых волн, отличающийся тем, что с целью повышения эффективности удаления пенетранта в моющие растворы, нагретые до +40-60°С, первоначально кислотный, а потом щелочной, вводят ультразвуковую волну с рассеивающих ультразвуковых преобразователей частотой 38-42 кГц и мощностью 6 кВт, при этом полное время ультразвуковой очистки составляет от 1 до 3 часов, в процессе проведения ультразвуковой очистки стеклокерамические изделия вращаются.

Способ иллюстрирует схема, представленная на фиг.1 и фиг. 2.

На фиг.1 показана схема очистки стеклокерамического изделия от пенетранта в ультразвуковой ванне. В ультразвуковой ванне 1 располагается стеклокерамическое изделие 2, к поверхности которого, через моющий раствор 3, подводятся ультразвуковые колебания от ультразвуковых преобразователей 4.

Удаление с поверхности стеклокерамического изделия 2 пенетранта происходит, в основном, под действием пульсирующих (не захлопывающихся) кавитационных пузырьков. На краях пленки загрязнений пульсирующие пузырьки, совершая интенсивные колебания, преодолевают силы сцепления пленки пенетранта с поверхностью стеклокерамического изделия 2, проникают под пленку, разрывают и отслаивают ее. Радиационное давление и звукокапиллярный эффект способствуют проникновению моющего раствора 3 в микропоры и неровности стеклокерамического изделия 2. Акустические течения в моющем растворе 3 осуществляют ускоренное удаление пенетранта с поверхности стеклокерамического изделия 2. Если же пленка пенетранта прочно связана с поверхностью стеклокерамического изделия 2, то для ее разрушения и удаления с поверхности необходимо наличие захлопывающихся кавитационных пузырьков, создающих микроударное воздействие на поверхность (Агранат Б.А. Ультразвуковая технология. - М.: Машиностроение, 1984). Акустическая кавитация возникает при прохождении звуковых волн высокой интенсивности. Кавитационные пузырьки возникают во время полупериода разряжения на газовых включениях, содержащихся в жидкости и на колеблющейся поверхности ультразвукового излучателя. Пузырьки захлопываются во время полупериодов сжатия, создавая кратковременные импульсы давления, способные удалить пенетрант (Кнэпп Р., Дейли Дж. и Хэммит Ф. Кавитация. - М.: Мир, 1974).

Сложное движение пузырьков, их захлопывание, слияние друг с другом и т. д. порождают в жидкости импульсы сжатия (микроударные волны) и микропотоки, вызывают локальное нагревание среды, ионизацию (Келлер О.К., Кратых Г.С., Любляницкий Г.Д. Ультразвуковая очистка. - Л.: Машиностроение, 1977).

Большую роль в процессе очистки играет правильно подобранный состав моющего раствора. Существенное влияние на протекание и развитие в моющих растворах специфических явлений, возбуждаемых ультразвуком, оказывают физико-химические свойства раствора.

В качестве моющего раствора первоначально используется кислотный раствор. Процесс растворения пенетранта в кислотном моющем растворе происходит при частоте ультразвуковой волны с рассеивающих ультразвуковых преобразователей 38-42 кГц и температуре около +40-60°С в течение 30 минут, при вращении стеклокерамического изделия. Затем кислотный моющий раствор с частично растворенным в нем пенетрантом удаляется из ультразвуковой ванны. В качестве моющего раствора на следующем этапе очистки используется щелочной раствор. Процесс растворения пенетранта в щелочном моющем растворе происходит при частоте ультразвуковой волны с рассеивающих ультразвуковых преобразователей 38-42 кГц и температуре около +40-60°С также в течении 30 минут и вращении стеклокерамического изделия. Затем щелочной моющий раствор с растворенными в нем остатками пенетранта также удаляется из ультразвуковой ванны. Таким образом, общее время очистки поверхности стеклокерамических изделий от пенетранта в ультразвуковой ванне составляет около 1 часа.

На фиг. 2 изображен внешний вид поверхности фрагмента стеклокерамического изделия после проведения цветной капиллярной дефектоскопии (а) и проведения ультразвуковой очистки от пенетранта (б).

Данный способ очистки поверхности стеклокерамических изделий от индикаторной проникающей жидкости (пенетранта), после цветной капиллярной дефектоскопии, можно применить в различных отраслях промышленности, связанных с производством изделий из стеклокерамики.

Похожие патенты RU2749343C1

название год авторы номер документа
Способ удаления индикаторной проникающей жидкости с поверхности стеклокерамических изделий 2022
  • Терехин Александр Васильевич
  • Русин Михаил Юрьевич
  • Хамицаев Анатолий Степанович
  • Типикин Максим Евгеньевич
  • Разкевич Владимир Степанович
  • Чулков Дмитрий Игоревич
RU2787759C1
Способ капиллярного контроля поверхностных дефектов стеклокерамических изделий 2023
  • Минин Сергей Иванович
  • Русин Михаил Юрьевич
  • Терехин Александр Васильевич
  • Типикин Максим Евгеньевич
  • Разкевич Владимир Степанович
RU2820654C1
Способ капиллярного неразрушающего контроля наличия дефектов в изделиях из кварцевой керамики 2022
  • Минин Сергей Иванович
  • Терехин Александр Васильевич
  • Русин Михаил Юрьевич
  • Хамицаев Анатолий Степанович
  • Харитонов Дмитрий Викторович
  • Анашкина Антонина Александровна
  • Разкевич Владимир Степанович
RU2787655C1
Способ капиллярного неразрушающего контроля наличия поверхностных и сквозных дефектов в изделиях из нитридной керамики после ее реакционного спекания 2023
  • Минин Сергей Иванович
  • Терехин Александр Васильевич
  • Типикин Максим Евгеньевич
RU2823226C1
Способ капиллярной дефектоскопии изделий 1985
  • Прохоренко Петр Петрович
  • Дежкунов Николай Васильевич
  • Коновалов Георгий Евменьевич
SU1300351A2
Способ капиллярной дефектоскопиииздЕлий 1978
  • Дежкунов Николай Васильевич
  • Прохоренко Петр Петрович
  • Денель Александр Кириллович
  • Белялов Мидихат Сямуиллович
SU794477A1
Ультразвуковой излучатель для капиллярной дефектоскопии 1985
  • Дежкунов Николай Васильевич
SU1272220A1
Способ ультразвукового неразрушающего контроля изделий из нитридной керамики на наличие дефектов 2023
  • Минин Сергей Иванович
  • Терехин Александр Васильевич
  • Русин Михаил Юрьевич
  • Чулков Дмитрий Игоревич
RU2812181C1
ПЕНЕТРАНТ ДЛЯ ЦВЕТНОЙ КАПИЛЛЯРНОЙ ДЕФЕКТОСКОПИИ 2007
  • Глазков Юрий Алексеевич
  • Пономарева Ольга Вадимовна
  • Хролова Ольга Рафаиловна
RU2331061C1
Способ обнаружения поверхностных дефектов 1983
  • Сумин Евгений Иосифович
SU1157420A1

Иллюстрации к изобретению RU 2 749 343 C1

Реферат патента 2021 года Способ удаления индикаторной проникающей жидкости с поверхности стеклокерамических изделий с использованием ультразвуковых волн

Изобретение относится к области неразрушающего контроля изделий из беспористых (П<2%) стеклокерамических материалов, а именно цветной капиллярной дефектоскопии на наличие поверхностных несплошностей и служит для исключения избыточных тепловых нагрузок на хрупкие изделия, снижения трудозатрат и энергозатрат при проведении контроля. Предложен способ удаления индикаторной проникающей жидкости с поверхности стеклокерамических изделий с использованием ультразвуковых волн с целью повышения эффективности удаления пенетранта в моющие растворы, нагретые до +40-60°С, первоначально кислотный, а потом щелочной, вводят ультразвуковую волну с рассеивающих ультразвуковых преобразователей частотой 38-42 кГц и мощностью 6 кВт, при этом полное время ультразвуковой очистки составляет от 1 до 3 часов, в процессе проведения ультразвуковой очистки стеклокерамические изделия вращаются. Техническим результатом предлагаемого изобретения является повышение эффективности удаления пенетранта с поверхности стеклокерамических изделий после проведения цветной капиллярной дефектоскопии без их термической обработки (выжигания). 2 ил.

Формула изобретения RU 2 749 343 C1

Способ удаления индикаторной проникающей жидкости с поверхности стеклокерамических изделий с использованием ультразвуковых волн, отличающийся тем, что с целью повышения эффективности удаления пенетранта в моющие растворы, нагретые до +40-60 °С, первоначально кислотный, а потом щелочной, вводят ультразвуковую волну с рассеивающих ультразвуковых преобразователей частотой 38-42 кГц и мощностью 6 кВт, при этом полное время ультразвуковой очистки составляет от 1 до 3 часов, в процессе проведения ультразвуковой очистки стеклокерамические изделия вращаются.

Документы, цитированные в отчете о поиске Патент 2021 года RU2749343C1

Келлер О.К., Кратых Г.С., Любляницкий Г.Д
Ультразвуковая очистка
Л.: Машиностроение,1977
Способ очистки оптических стекол 1976
  • Яковлев В.Д.
  • Афанасьев В.И.
  • Гетманский И.К.
  • Маташкина Р.М.
  • Крыхтина Л.П.
  • Статива В.П.
  • Шаповалов В.И.
  • Круть А.И.
  • Загребельный Н.С.
  • Гаевой Г.М.
SU600767A1
СПОСОБ ОЧИСТКИ СТЕКЛЯННЫХ БАЛЛОНОВ 2006
  • Карабанов Сергей Михайлович
  • Литвинова Ирина Дмитриевна
  • Провоторов Виктор Степанович
  • Ясевич Альбина Николаевна
RU2328353C1
Способ очистки оптических стекол 1980
  • Акишева И.Ш.
  • Багаутдинова Ф.Г.
  • Ольхов Г.И.
SU841158A2
EP 305827 B1, 02.01.1991
Гидравлический фильтр 1984
  • Рудцкий Роберт Иванович
  • Семиков Вячеслав Сергеевич
  • Шелтопаев Анатолий Серафимович
SU1191095A1
DE 19708114 C1, 30.04.1998.

RU 2 749 343 C1

Авторы

Минин Сергей Иванович

Русин Михаил Юрьевич

Терехин Александр Васильевич

Хамицаев Анатолий Степанович

Типикин Максим Евгеньевич

Харитонов Дмитрий Викторович

Даты

2021-06-08Публикация

2020-10-22Подача