Изобретение относится к электрохимическому синтезу микро-мезопористой меди с развитой поверхностью. Это материал с электрохимическими характеристиками, перспективными для создания подложек для нанесения катализатора, электроосаждения материалов с заданными параметрами, для формирования основы малоизнашиваемых анодов.
Исследованию наноструктурированных мезопористых материалов, полученных различными способами при обычных температурах, посвящено большое количество работ. Анализ современного состояния проблемы можно найти в обзоре (J. Zhangand, C. M. Li. Chem.Soc.Rev., 2012, 41, 7016-7031)[1]. Как следует из этого обзора, один из способов синтеза мезопористых материалов основан на использовании нанотемплатов, после химического удаления которых и образуются нанопористые поверхностные слои. Известен метод термического разложения неустойчивых азотистых соединений металлов, при использовании которого получаются нанопены с рекордно низкой плотностью. Удаление же более электроотрицательного компонента сплава, так называемый «dealloying», распространено в меньшей степени, и в основном применяется для получения благородных металлов в мезопористом состоянии – золота, серебра и платиноидов (Q. Zhang, Z. Zhang. Physical Chemistry Chemical Physics, 2010, 12, 1453-1472) [2].
Так, в работе (М. Hakamada, M. Mabuchi. Materials Transactions, V.50, 3(2009), 431-435) представлен способ получения мезопористого палладия в водном растворе серной кислоты [3]. Сплавы палладия с железом, кобальтом и никелем в соотношении 1:4 подвергали анодному растворению при потенциале +0,5 В относительно стандартного каломельного электрода в течение 42 часов.
Получение микро-мезопористой меди с учетом электроотрицательного компонента сплава известно из источника (Э.А. Карфидов, Е.А. Никитина, Н.А. Казаковцева, М.А. Майков, Исследование селективного растворения сплавов меди в расплавленных солевых электролитах. Успехи в химии и химической технологии, том XXXII, 2018, № 13, с.117-119)[4].
В данном способе получения микро-мезопористой меди поверхностную структуру латуни модифицируют и развивают обработкой постоянным током. Установлено, что при анодной выдержке латуни в гальваностатическом режиме электролиза при плотности тока 220 А/м2 и в потенциостатическом режиме при потенциале 0,2 В относительно потенциала коррозии, получают развитый приповерхностный слой, обедненный по наиболее электроотрицательному компоненту бинарного сплава - цинка. Наименьший размер пор в конечных образцах, достигнутый в гальваностатическом режиме растворения – 500 нм, в потенциостатическом – 250 нм. Установлено что наиболее благоприятная температура для получения развитой поверхностной структуры - 320°С.
В результате данного эксперимента установлено, что посредством анодной выдержки исходного материала с прилагаемым значением плотности тока или потенциала можно получать микро-мезопористую медную моно-структуру, глубина и размер пор которой является однотипным. Получить пористую структуру сложной формы, за счет изменения характера пустотного зародышеобразования в ходе процесса электролиза, данным способом невозможно, из-за торможения процесса продуктами солевой пассивации.
Задача настоящего изобретения – получение микро-мезопористой меди с развитой поверхностью.
Для этого предложен электрохимический способ получения микро-мезопористой меди с развитой поверхностью, который, как и прототип, включает обработку латуни током в солевом расплаве. Способ отличается тем, что латунь марки Л63 обрабатывают переменным квадратноволновым током в расплаве смеси солей, содержащей 54,4 мас.% хлорида цезия, 15,3 мас.% хлорида калия, 30,3 мас.% хлорида лития, обработку ведут при температуре 500°С, при этом вначале латунь выдерживают при потенциале +0.4 В относительно потенциала разомкнутой цепи в течение 15 минут, а далее при потенциале +0.1 В – в течение 30 минут.
В отличие от прототипа, в котором латунь, как бинарный сплав меди с цинком, обрабатывают постоянным током в солевом расплаве и получают микро-мезопористую медную моно-структуру, глубина и размер пор которой от 250 до 500 нм является однотипным, в предложенном способе латунь марки Л63 обрабатывают переменным квадратноволновым током в расплаве солей хлоридов щелочных металлов, и в результате при высокой скорости процесса и отсутствии влияния компонентов электролита на получаемый нанопористый металл, получают микро-мезопористую медь с развитой поверхностью.
Технический результат, достигаемый предложенным изобретением, заключается в получении микро-мезопористой меди с развитой поверхностью при высокой скорости процесса и отсутствии влияния компонентов электролита на получаемый нанопористый металл.
Изобретение иллюстрируется рисунком, где представлена морфология конечной поверхности образца латуни Л63 после квадратно-волновой потенциометрии в хлоридном расплаве при 500°С. Значение последовательно приложенных потенциалов составляло 0.4В и 0.1В.
В экспериментальном получении микро-мезопористой меди с развитой поверхностью использовали латунь марки Л63, как недорогой, серийно выпускаемый, а потому наиболее предпочтительный для промышленного использования материал. Латунь марки Л63 обрабатывали переменным квадратноволновым током в расплаве смеси солей, содержащей 54,4 мас.% хлорида цезия, 15,3 мас.% хлорида калия, 30,3 мас.% хлорида лития.
Экспериментально обнаружено, что для получения наиболее развитой поверхности требуется вначале выдержать образец латуни Л63 при большем потенциале относительно потенциала разомкнутой цепи (0.4 В) в течение 15 минут, для того чтобы получить развитую подложку с большим размером пор. Затем для формирования развитой поверхности в уже образовавшихся крупных порах необходимо задать меньший потенциал (0.1 В) и выдержать в нем латунь в течение 30 минут. Конечная морфология, формируемая данным способом в данной последовательности установления потенциалов, представлена на рисунке, из которого видно, что на поверхности материала формируются неравномерно распределенные поры (от 500 до 1200 нм), в которых присутствует развитая структура нанометровой величины. Получен слой меди с развитым приповерхностным объемом.
Таким образом, электрохимическим способом при высокой скорости процесса и отсутствии влияния компонентов электролита на получаемый нанопористый металл получена микро-мезопористая медь с развитой поверхностью.
название | год | авторы | номер документа |
---|---|---|---|
Электрохимический способ получения нановолокон металлической меди | 2020 |
|
RU2757750C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКО- И НАНОДИСПЕРСНОГО ПОРОШКА МЕТАЛЛОВ ИЛИ СПЛАВОВ | 2009 |
|
RU2423557C2 |
Электрохимический способ получения объёмно-макропористой структуры палладия | 2021 |
|
RU2776049C1 |
Электрохимический способ получения микропористой структуры сплава на основе золота | 2021 |
|
RU2784071C1 |
Способ регенерации хлоридного электролита при электрохимической переработке отработавшего ядерного топлива | 2016 |
|
RU2647125C1 |
Электрохимический способ получения микропористой структуры сплава на основе золота | 2021 |
|
RU2784188C1 |
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРНЫХ АЛЮМИНИЙ-ЦИРКОНИЕВЫХ СПЛАВОВ | 2012 |
|
RU2515730C1 |
СПОСОБ КОРРОЗИОННОЙ ЗАЩИТЫ ОБОРУДОВАНИЯ, РАБОТАЮЩЕГО В СРЕДЕ РАСПЛАВА ХЛОРАЛЮМИНАТА КАЛИЯ. | 2013 |
|
RU2567430C2 |
Электрохимический способ нанесения медных защитных покрытий из галогенидных расплавов на поверхность стали 12Х18Н10Т | 2021 |
|
RU2774682C1 |
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА ГЕКСАБОРИДА ГАДОЛИНИЯ | 2012 |
|
RU2507314C1 |
Изобретение относится к электрохимическому синтезу микро-мезапористой меди с развитой поверхностью, которая может быть использована в качестве материала с электрохимическими характеристиками, перспективными для создания подложек для нанесения катализатора, электроосаждения материалов с заданными параметрами, а также для формирования основы малоизнашиваемых анодов. Способ включает обработку латуни марки Л63 переменным квадратноволновым током в расплаве смеси солей, содержащей 54,4 мас.% хлорида цезия, 15,3 мас.% хлорида калия, 30,3 мас.% хлорида лития. Обработку ведут при температуре 500оС, при этом вначале латунь выдерживают при потенциале +0,4В относительно потенциала разомкнутой цепи в течение 15 мин, а далее при потенциале +0,1В в течение 30 мин. Способ позволяет получить микро-мезопористую медь с развитой поверхностью при высокой скорости процесса и отсутствии влияния компонентов электролита на получаемый нанопористый металл. 1 ил.
Электрохимический способ получения микро-мезопористой меди с развитой поверхностью, включающий обработку латуни током в солевом расплаве, отличающийся тем, что используют латунь марки Л63, которую обрабатывают переменным квадратноволновым током в расплаве смеси солей, содержащей 54,4 мас.% хлорида цезия, 15,3 мас.% хлорида калия, 30,3 мас.% хлорида лития, обработку ведут при температуре 500°С, при этом вначале латунь выдерживают при потенциале +0,4 В относительно потенциала разомкнутой цепи в течение 15 мин, а далее при потенциале +0,1 В – в течение 30 мин.
КАРФИДОВ Э.А | |||
и др | |||
Исследование селективного растворения сплавов меди в расплавленных солевых электролитах | |||
Успехи в химии и химической технологии., том XXXII, 2018, N 13, с | |||
Аппарат для испытания прессованных хлебопекарных дрожжей | 1921 |
|
SU117A1 |
КАРФИДОВ Э.А | |||
и др | |||
Характер селективного анодного растворения | |||
Влияние состава сплава | |||
Расплавы, 2019, N6, c.531-540 | |||
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДА МЕДИ | 2011 |
|
RU2464224C1 |
СПОСОБ ФОРМИРОВАНИЯ НАНОРАЗМЕРНЫХ ПОРИСТЫХ СТРУКТУР ТВЕРДОКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ | 2007 |
|
RU2349543C1 |
Авторы
Даты
2021-07-13—Публикация
2020-12-08—Подача