СИСТЕМА ПРОГНОЗИРОВАНИЯ БЕЗОПАСНОГО РАСХОЖДЕНИЯ СУДОВ Российский патент 2021 года по МПК B63H25/04 G08G3/02 G05D1/02 

Описание патента на изобретение RU2752725C1

Изобретение относится к области судовождения и может быть использовано в средствах автоматического и дистанционного управления движением судов для обеспечения безопасного расхождение с окружающими судами согласно Международным правилам предупреждения столкновений судов в море (МППСС-72).

Одним из условий реализации управления судна в безэкипажном режиме является разработка автоматических систем, обеспечивающих безопасность судовождения в различных критических ситуациях, в том числе в районах интенсивного судоходства, где требуется обеспечить безопасное расхождение с окружающими судами согласно требованиям МППСС-72.

Известна аппаратура автоматического расхождения судна со встречным объектом по патенту RU 2376194 (МПК В63Н 25/04, G08G 3/00, G05D 1/00, опубл. 20.12.2009), которая содержит приемник спутниковой навигационной системы, вырабатывающий сигналы текущей широты и долготы судна, а также сигнал текущего путевого угла, задатчик путевого угла, датчик угловой скорости судна, датчик угла руля, выходы которых подключены соответственно к четырем входам сумматора, вырабатывающего сигнал скорости перекладки руля и соединенного с рулевым приводом, блок программного управления, вырабатывающий сигнал для корректировки заданного путевого угла при появлении встречного объекта и соединенный выходом с пятым входом сумматора, радар, вырабатывающий сигналы азимута встречного объекта и расстояния от встречного объекта до судна, и вычислитель, подключенный входами к радару и приемнику спутниковой навигационной системы, а выходом - к входу блока программного управления и выполненный с возможностью формирования траекторий будущего движения судна и встречного объекта, а также определения по ним широты и долготы точки пересечения отрезков траекторий будущего движения судна и встречного объекта.

Из патента на изобретение RU 2383464 (МПК В63Н 25/04, G08G 3/00, G05D 1/00, опубл. 10.03.2010) известно устройство исключения столкновения судна с встречным движущимся объектом, которое содержит приемник спутниковой навигационной системы, вырабатывающий сигналы курса, текущей широты, текущей долготы, путевого угла и текущей скорости судна, задатчик путевого угла, датчик угловой скорости судна и датчик угла руля, выходы которых подключены к соответствующим входам блока сбора и передачи навигационной обстановки (сумматора), вырабатывающего сигнал скорости перекладки руля и соединенного с рулевым приводом, блок коррекции скорости хода, радар, вырабатывающий сигналы азимута встречного объекта и расстояния от встречного объекта до судна, и блок анализа обстановки и выработки решений (вычислитель), подключенный входами к радару и приемнику спутниковой навигационной системы, а выходом - к входу блока коррекции скорости хода, и выполненный с возможностью формирования траекторий будущего движения судна и встречного объекта, а также определения по ним в ограниченной акватории судна широты и долготы точки пересечения отрезков траекторий будущего движения судна и встречного объекта.

В качестве недостатков приведенных аналогов можно отметить отсутствие возможностей: учета требований МППСС-72, использования альтернативных источников навигационной информации и подхода к обобщению целевой обстановки, учета ограничений движения судов в море, а также уточнения физических ограничений судна для маневрирования.

Техническое решение, известное из патента RU 2383464, выбрано в качестве ближайшего аналога данного изобретения.

Задача, на решение которой направлено данное изобретение, заключается в создании системы прогнозирования безопасного расхождения судов, обеспечивающей безопасное расхождение с окружающими судами согласно требованиям МППСС-72, путем устранения указанных недостатков.

Технический результат, достигаемый при осуществлении заявляемого изобретения, заключается в повышение точности определения оптимальных маневров расхождения судов в различных критических ситуациях.

Указанный технический результат достигается тем, что в систему прогнозирования безопасного расхождения судов, содержащей блок сбора и передачи навигационной обстановки и блок анализа обстановки и выработки решений, дополнительно включены блок комплексирования целевой обстановки, блок формирования и передачи ограничений плавания, блок обработки и маршрутизации данных, блок математической модели движения судна и блок ведения по маршруту, при чем вход-выход блока комплексирования целевой обстановки соединен с входом-выходом блока обработки и маршрутизации данных, выход которого соединен с входом блока математической модели движения судна, входы-выходы которого соединены с входами-выходами блока анализа обстановки и выработки решений и блока ведения по маршруту, вход-выход которого соединен с входом-выходом блока обработки и маршрутизации данных, входы-выходы которого соединены с входами-выходами блока формирования и передачи ограничений плавания, блока сбора и передачи навигационной обстановки и блока анализа обстановки и выработки решений, который выполнен с возможностью определения маневра безопасного расхождения с окружающими судами согласно основному алгоритму, соответствующему рекомендациям правил МППСС-72, и альтернативному алгоритму, позволяющему снизить вероятность не построения маневра безопасного расхождения с окружающими судами в случае наличия опасной ситуации судовождения.

Сущность заявляемой системы прогнозирования безопасного расхождения судов поясняется примером ее реализации и чертежами, где изображено:

на фиг. 1 - структурная электрическая схема системы;

на фиг. 2 - блок-схема основного алгоритма расчета маневра безопасного расхождения судна;

на фиг. 3 - блок-схема альтернативного алгоритма расчета маневра безопасного расхождения судна;

на фиг. 4 - блок-схема алгоритма расчета траектории маневра расхождения судна;

на фиг. 5 - блок-схема алгоритма валидации и оценки качества траекторий маневра расхождения судна.

Система прогнозирования безопасного расхождения судов включает (фиг. 1) блок 1 комплексирования целевой обстановки (БКЦО), блок 2 формирования и передачи ограничений плавания (БФПОП), блок 3 сбора и передачи навигационной обстановки (БСПНО), блок 4 обработки и маршрутизации данных (БОМД), блок 5 анализа обстановки и выработки решений (БАОВР), блок 6 математической модели движения судна (БММДС) и блок 7 ведения по маршруту (БВМ).

Блок 1 комплексирования целевой обстановки предназначен для приема данных о целевой обстановке от обзорно-поисковой системы, радиолокационной станции и автоматической идентификационной системы, формирования и выдачи обобщенной целевой обстановки и представляет собой программно-аппаратный комплекс, реализованный с использованием специализированного программного обеспечения, которое обеспечивает прием, анализ и отказоустойчивую фильтрацию навигационных данных на основе диагностических и отказоустойчивых фильтров Калмана.

Блок 2 формирования и передачи ограничений плавания предназначен для установки и обновления коллекции морских электронных навигационных карт, приема дополнительных данных от сервисов сообщений и запросов на выдачу ограничений от других подсистем, формирования и выдачи ограничений плавания и представляет собой специализированный картографический сервер.

Блок 3 сбора и передачи навигационных данных предназначен для приема данных о положении судна от навигационных датчиков и представляет собой программно-аппаратный комплекс, реализованный с использованием специализированного программного обеспечения.

Блок 4 обработки и маршрутизации данных предназначен для получения, сохранения и перераспределения данных между блоками системы, а также формирования команд тревог, предупреждений и сообщений. Блок представляет собой программно-аппаратный комплекс.

Блок 5 анализа обстановки и выработки решений предназначен для выполнения анализа навигационной обстановки на предмет опасностей плавания, идентификации их в соответствии с требованиями МППСС-72, а также расчета маневра безопасного расхождения с окружающими судами и возвращения на маршрут. Для расчета маневра безопасного расхождения судов используется алгоритм, представляющий собой мультиагентную систему, агенты которой имеют различное функциональное назначение и реализованы в отдельных программных модулях, общая задача которых обеспечить расчет безопасного маневра расхождения судна с учетом навигационной обстановки. В БАОВР 5 реализованы основной (фиг. 2) и альтернативный (фиг. 3) алгоритмы расчета маневра безопасного расхождения судна. Основной алгоритм (фиг. 2) имеет формализованную логику работы, соответствующую рекомендациям правил МППСС-72. Альтернативный алгоритм (фиг. 3), обеспечивающий повышение отказоустойчивости, использует в основе неявные методы расчета траектории движения судна. Блок представляет собой программно-аппаратный комплекс.

Блок 6 математической модели движения судна предназначен для формирования, хранения текущей математической модели движения судна, которая используется для расчета установившихся режимов движения судна в зависимости от его состояния, целевой траектории, а также гидрометеорологической обстановки, и представляет собой программно-аппаратный комплекс, реализованный с использованием специализированного программного обеспечения.

Блок 7 ведения по маршруту обеспечивает соотнесение маршрутных данных (запланированный маршрут, исполняемый маневр или траектория дистанционного управления) и собственных навигационных данных судна, формирование и выдачу уставок в подсистему управления движением, а также команд на подачу звуковых и световых сигналов встречным судам при расхождении с ними. Блок представляет собой программно-аппаратный комплекс, реализованный с использованием специализированного программного обеспечения.

Система работает следующем образом.

Информации от судовых конвенционных систем поступает в БКЦО 1 и БСПНО 3, которая передается в БОМД 4. Из БФПОП 2 ограничения района плавания, определенные по результатам обработки картографической информации, передаются в БОМД 4. В БАОВР 5 из БОМД 4 поступают данные, описывающих навигационную обстановку, текущий маршрут судна, ограничения и рекомендации при построении маршрута (радиус циркуляции, скорости и пр.) и, опционально, текущий исполняемый маневр судна. После обработки этих данных выполняется анализ навигационной обстановки, в рамках которой осуществляется определение степени опасности целей и их ранжирование. Все многообразие возможных навигационных обстановок подразделяются на десять формализованных типовых навигационных ситуаций (ТНС), которые характеризуются различными признаками, вытекающие из взаимных характеристик движения судна и цели, состояния судна, а также погодной обстановки, и является результатом формализации МППСС-72. Для каждой из ТНС определен набор возможных действий судна для совершения маневра расхождения.

В случае отсутствия опасных целей расчет маневра безопасного расхождения с целями не выполняется, а в БАОВР 5 формируется соответствующее информационной сообщение.

В случае обнаружения опасных целей в БАОВР 5 согласно основному алгоритму (фиг. 2) производится расчет маневра расхождения судна с целями, если решение не найдено, то расчет маневра расхождения судна с целями выполняется согласно альтернативному алгоритму (фиг. 3). В БАОВР 5 по основному алгоритму определяется ТНС для наиболее опасной цели, определяющей вариант действия судна, согласно которому производится расчет маневра расхождения судна с целями. При успешном расчете маневра расхождения происходит передача полученных данных в БОМД 4. В случае неудачи расчета варианта маневра расхождения судна с целями для текущей ТНС БАОВР 5 выдает информационное сообщение и выполняет расчет траектории маневра расхождения согласно альтернативному алгоритму (фиг. 3) до тех пор, пока не будет найдена оптимальная для текущей ТНС траектории маневра расхождения.

Принимая на вход итерируемые параметры, в БАОВР 5 запускается цикл (фиг. 4) расчета набора траекторий RVO (reciprocal velocity obstacles), ограниченный предварительно установленным количеством итераций. На каждой итерации случайным образом, в рамках заданного диапазона происходит изменение внутренних параметров алгоритма RVO: neighbourDist; radius; timeHorizon; timeHorizonObst; timeStep.

Параметр neighbourDist, характеризующий максимальную дистанцию, в пределах которой будут учитываться цели при расчете траектории, определяется по формуле:

neighbourDist=2+D1*totalDist,

где D1 - равномерно распределенное случайное число в диапазоне от 0 до 1;

totalDist - общая протяженность маршрута.

Параметр radius, характеризующий радиус агента RVO, то есть расстояние, на которое агент не подпускает к себе других агентов, определяется по формуле:

radius=RADIUS_SEARCH_COEF+D3*RADIUS_SEARCH_RANGE,

где D3 - равномерно распределенное случайное число в диапазоне от 0 до 1;

RADIUS_SEARCH_COEF - аддитивная константа;

RADIUS_SEARCH_RANGE - мультипликативная константа.

Параметр timeHorizon характеризует минимальное количество времени, в течение которого скорости агента, вычисленные с помощью моделирования, безопасны по сравнению с другими агентами. Чем больше это число, тем раньше этот агент отреагирует на присутствие других агентов, но тем меньше у агента свободы выбора скорости движения. Параметр timeHorizon определяется по формуле:

timeHorizon=0.1+D2,

где D2 - равномерно распределенное случайное число в диапазоне от 0 до 1.

Параметр timeHorizonObst характеризует минимальный промежуток времени, в течение которого скорости агента, вычисленные при моделировании, безопасны по отношению к препятствиям. Чем больше это число, тем быстрее этот агент отреагирует на наличие препятствий, но тем меньше у агента свободы выбора скорости. Параметр timeHorizonObst определяется по формуле:

timeHorizonObst=0.2+D5,

где D5 - равномерно распределенное случайное число в диапазоне от 0 до 1.

Параметр timeStep, характеризующий шаг расчета следующей точки траектории по времени, определяется по формуле:

timeStep=DIST_VARIATION*timeDist/(ITERATION_TIME_LIMIT*(0.6+1.5*D4)),

где D4 - равномерно распределенное случайное число в диапазоне от 0 до 1;

timeDist - примерно рассчитанное время движения по маршруту;

DIST_VARIATION и ITERATION_TIME_LIMIT - настраиваемые константы.

В БАОВР 5 осуществляется проверка каждой из построенных траекторий маневра расхождения судна с целями. Проверка производится в соответствии с алгоритмом валидации и оценки качества траекторий маневра расхождения судна (фиг. 5). В случае, если коэффициент качества K<50, то траектория признается оптимальной, и ее параметры из БАОВР 5 передаются в БОМД 4. В противном случае алгоритм продолжает построение траекторий, записывая параметры каждой из тех, что прошли проверку опасного сближения с целями, в массив траекторий. В случае не нахождения траектории с коэффициентом качества K<50 за предварительно установленное количество итераций происходит дальнейший расчет траекторий двумя другими методами. Методом, основанном на методе перебора Monte-Carlo и методом, основанном на APF (artificial potential fields) с перебором единственного параметра timeStep.Если в результате работы этих методов не находится ни единой траектории с K<50, то из всего набора валидных траекторий, записанных в массив, выбирается та, у которой коэффициент качества будет наименьшим, параметры выбранной траектории передаются в БОМД 4.

По результатам обработки готовая траектория из БОМД 4 передается в БВМ 7, который уточняет возможности судна с учетом текущих характеристик, полученных из БММДС 6, и формирует из заданной траектории курс и скорость движения судна в момент времени, с целью соответствия выработанному маневру расхождения.

Заявленное изобретение реализовано на действующем грунтовозе проекта НВ900 и сухогрузе проекта RSD49. Опытная эксплуатация показала, что заявленное изобретение позволяет обеспечить идентификацию навигационной опасности, повышение точности определение оптимального маневра расхождения судна в различных критических ситуациях с учетом МППСС-72 и фактических возможностей маневрирования судна, а также передачу управляющих сигналов в виде курса и скорости для последующей интерпретации в управляющие сигналы для судовых движительных систем.

Похожие патенты RU2752725C1

название год авторы номер документа
Система прогнозирования безопасного расхождения судов 2022
  • Чернявец Владимир Васильевич
RU2780081C1
СПОСОБ АВТОМАТИЧЕСКОЙ ПРОВОДКИ СУДНА 2012
  • Лобанов Андрей Александрович
  • Адамов Николай Олегович
  • Румянцев Юрий Владимирович
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
  • Чернявец Владимир Васильевич
RU2501708C1
Способ генерации предварительной прокладки пути судна и устройство для его реализации 2021
  • Чернявец Владимир Васильевич
RU2782617C1
НАВИГАЦИОННЫЙ КОМПЛЕКС 2012
  • Чернявец Антон Владимирович
  • Жильцов Николай Николаевич
  • Зеньков Андрей Федорович
  • Аносов Виктор Сергеевич
  • Федоров Александр Анатольевич
  • Чернявец Владимир Васильевич
RU2483280C1
Тренажерный комплекс для подготовки судоводителей 2017
  • Петров Владимир Алексеевич
  • Шарлай Георгий Николаевич
  • Пузачев Александр Николаевич
RU2657708C1
НАВИГАЦИОННЫЙ КОМПЛЕКС ВЫСОКОСКОРОСТНЫХ СУДОВ 2004
  • Чернявец В.В.
  • Пирогов Н.Н.
  • Алексеев Ю.Н.
  • Полозова Л.Д.
  • Федоров А.А.
  • Чернявец А.В.
RU2260191C1
Комплекс навигации и управления кораблем 2022
  • Чернявец Владимир Васильевич
RU2786251C1
СПОСОБ ОБЕСПЕЧЕНИЯ БЕЗАВАРИЙНОГО ДВИЖЕНИЯ НАДВОДНОГО ИЛИ ПОДВОДНОГО СУДНА ПРИ НАЛИЧИИ ПОДВОДНЫХ ИЛИ НАДВОДНЫХ ПОТЕНЦИАЛЬНО ОПАСНЫХ ОБЪЕКТОВ 2012
  • Небабин Виктор Георгиевич
RU2513198C2
Система управления техническими средствами и движением МАНС 2023
  • Дворников Кирилл Александрович
  • Волков Антон Николаевич
  • Азаров Михаил Михайлович
  • Аксенов Виктор Геннадьевич
  • Ремизов Андрей Олегович
RU2825914C1
Оптико-электронная система преобразования данных изображения в элементы вектора состояния судна 2023
  • Студеникин Дмитрий Евгеньевич
  • Куку Эдем Аметович
RU2808873C1

Иллюстрации к изобретению RU 2 752 725 C1

Реферат патента 2021 года СИСТЕМА ПРОГНОЗИРОВАНИЯ БЕЗОПАСНОГО РАСХОЖДЕНИЯ СУДОВ

Система прогнозирования безопасного расхождения судов предназначена для обеспечения безопасного расхождения с окружающими судами согласно Международным правилам предупреждения столкновений судов в море (МППСС-72). Система включает блок комплексирования целевой обстановки, блок формирования и передачи ограничений плавания, блок сбора и передачи навигационной обстановки, блок обработки и маршрутизации данных, блок анализа обстановки и выработки решений, блок математической модели движения судна и блок ведения по маршруту. Система обеспечивает повышение точности определения оптимальных маневров расхождения судов, тем самым повышает безопасность судовождения в различных критических ситуациях. 5 ил.

Формула изобретения RU 2 752 725 C1

Система прогнозирования безопасного расхождения судов, содержащая блок сбора и передачи навигационной обстановки и блок анализа обстановки и выработки решений, отличающаяся тем, что в состав системы включены блок комплексирования целевой обстановки, блок формирования и передачи ограничений плавания, блок обработки и маршрутизации данных, блок математической модели движения судна и блок ведения по маршруту, причем вход-выход блока комплексирования целевой обстановки соединен с входом-выходом блока обработки и маршрутизации данных, выход которого соединен с входом блока математической модели движения судна, входы-выходы которого соединены с входами-выходами блока анализа обстановки и выработки решений и блока ведения по маршруту, вход-выход которого соединен с входом-выходом блока обработки и маршрутизации данных, входы-выходы которого соединены с входами-выходами блока формирования и передачи ограничений плавания, блока сбора и передачи навигационной обстановки и блока анализа обстановки и выработки решений, который выполнен с возможностью определения маневра безопасного расхождения с окружающими судами согласно основному алгоритму, соответствующему рекомендациям правил МППСС-72, и альтернативному алгоритму, позволяющему снизить вероятность непостроения маневра безопасного расхождения с окружающими судами в случае наличия опасной ситуации судовождения.

Документы, цитированные в отчете о поиске Патент 2021 года RU2752725C1

СПОСОБ АВТОМАТИЧЕСКОЙ ПРОВОДКИ СУДНА 2012
  • Лобанов Андрей Александрович
  • Адамов Николай Олегович
  • Румянцев Юрий Владимирович
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
  • Чернявец Владимир Васильевич
RU2501708C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГИДРОДИНАМИЧЕСКИХ ПАРАМЕТРОВ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДВИЖЕНИЯ СУДНА 2010
  • Юдин Юрий Иванович
  • Пашенцев Сергей Владимирович
RU2442718C1
СПОСОБ И СИСТЕМА КОНТРОЛЯ МЕСТОПОЛОЖЕНИЯ СУДНА С ПОМОЩЬЮ НЕЧЕТКОЙ ЛОГИКИ 2018
  • Кондратьев Сергей Иванович
  • Студеникин Дмитрий Евгеньевич
  • Джавукцян Марспет Лерникович
  • Глимбоцкий Виталий Владиславович
RU2678762C1
JP 2012210875 А, 01.11.2012
САМОЦЕНТРИРУЮЩЕЕ ЗАЖИМНОЕ УСТРОЙСТВО 1994
  • Соловьев В.А.
  • Котов В.Я.
  • Егошин А.И.
RU2088396C1

RU 2 752 725 C1

Авторы

Ковалев Сергей Александрович

Крестьяников Никита Владимирович

Пудовкин Алексей Андреевич

Шариков Владимир Борисович

Даты

2021-07-30Публикация

2020-11-12Подача