СПОСОБ ИЗГОТОВЛЕНИЯ ПРУТКОВ ИЗ СВЕРХУПРУГИХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ Ti-Zr-Nb Российский патент 2021 года по МПК C22F1/18 B21J5/00 B21B3/00 

Описание патента на изобретение RU2753210C1

Изобретение относится к области металлургии и может быть использовано для получения прутков из сверхупругих сплавов для медицинского применения.

Из уровня техники известен выбранный в качестве прототипа способ получения прутков из сплава системы никель-титан с эффектом памяти формы по патенту РФ №2162900, согласно которому сплав с эффектом памяти формы, изготавливают методом поперечно-винтовой прокатки или прессованием, с дальнейшей ротационной ковкой при температуре 450 - 950 °С.

Задача, решаемая при создании заявленного способа, состоит в получении из слитков из сверхупругих сплавов системы Ti-Zr-Nb длинномерных (l>2000 мм) прутков мелких сечений (диаметром 3÷10 мм) c мелкодисперсной структурой (размер зерна 10÷30 мкм) и низким модулем Юнга (E = 30÷50 ГПа), при этом технический результат, достигаемый при решении такой задачи, состоит в повышении прочности (σв = 600÷800 МПа), высокой величины обратимой деформации (εобр = 4,0÷6,5 %) и сверхупругого поведения при комнатной температуре для дальнейшего их применения в области медицины.

Для достижения такого результата предлагается способ изготовления прутка из сверхупругого сплава системы титан-цирконий-ниобий, включающий получение полуфабриката поперечно-винтовой прокаткой из слитка и ротационную ковку полуфабриката на пруток окончательного размера, при этом, перед поперечно-винтовой прокаткой слиток подвергают мультиосевой ковке с истинной степенью деформации, составляющей 0,15-0,25 от общей истинной степени деформации, а винтовую прокатку выполняют с истинной степенью деформации, составляющей 0,45-0,65 от общей истинной степени деформации.

Дополнительно, мультиосевую ковку, поперечно-винтовую прокатку и ротационную ковку ведут с промежуточными выдержками при температурах 950÷1050 °С, 900÷950 °С и 600÷750 °С, соответственно.

Идеология заявленного способа построена на трехэтапной высокотемпературной термомеханическая обработке (ТМО) - пластическом деформировании по схеме «мультиосевая ковка (МОК) + поперечно-винтовая прокатка (ПВП) + ротационная ковка (РК)», с соблюдением последовательности и регламентации долей каждого процесса от общей степени истинной деформации.

Этап 1. Исходный слиток (литая заготовка) из сверхупругого сплава системы Ti-Zr-Nb в силу своей природы характеризуется наличием ликвационной пористости и рыхлости, крупнозернистой структурой, ослабленной межзеренной связью, и, как следствие, весьма ограниченной деформируемостью. Как следствие, мультиосевая ковка (МОК) происходит в условиях неравномерного объемного сжатия с чередованием направления приложения деформирующих усилий, что наиболее благоприятно сказывается на начальной деформации литой структуры. Таким образом, МОК призвана полностью устранить пористость и рыхлость структуры исходного слитка, выполнить первичное дробление литых кристаллитов, повысить прочность границ зерен и, что наиболее существенно, повысить деформируемость заготовок и её способность деформироваться остаточно без макроразрушений на следующем этапе 2, в условиях развитых сдвиговых деформаций.

Истинная степень деформации εМОК при МОК должна составлять 0,15÷0,25 от общей истинной степени деформации εΣ = εМОКПВПРК. Если доля εМОК <0,15εΣ, то начальная проработка структуры исходного слитка становится недостаточной для искомого повышения деформируемости, что ведет к критическому возрастанию опасности разрушения исходного слитка на втором этапе. При εМОК > 0,25εΣ недопустимо снижается доля последующих этапов для достижения общего технического результата. Схема МОК эффективно реализуется на относительно коротких заготовках, которые сохраняют продольную устойчивость при деформации сжатия вдоль длинной оси после очередной кантовки. С увеличением εМОК возрастает длина поковки и увеличивается склонность к потере устойчивости при очередной осадке в направлении длинной оси.

Плотность металла после первого этапа достигает 100% от теоретической, размер зерна 100-200 мкм.

Этап 2. Поперечно-винтовая прокатка (ПВП) выполняет функцию основного структурообразующего фактора, обеспечивающего интенсивное дробление структуры слитка и повышающего пластические и физико-механические свойства металла.

Интервал истинной степени деформации при ПВП εПВП составляет 0,45÷0,65 от суммарной истинной степени деформации при МОК, ПВП и РК, т.е. εПВП = (0,45÷0,65)εΣ

Значение εПВП меньше 0,45 недостаточно для требуемого измельчения структуры и повышения пластических свойств металла и ведет к возможному образованию разрывов при ротационной ковке на третьем этапе. В случае, если значение εПВП превышает 0,65 от εΣ, то образуется чрезмерный градиент структуры и свойств по сечению получаемых прутков, а, кроме того, становится затруднительным получение прутков диаметром менее 10 мм.

В результате формируется градиентная структура по сечению прутка с размером зерна от 20 до 100 мкм. Сплав в этом состоянии обладает высокими характеристиками пластичности (относительное удлинение до разрушения 20-40%) но невысокой прочностью (σв = 500-600 МПа).

Этап 3. Ротационная ковка (РК) применяется как финишная обработка для выравнивания градиентной структуры и получения прутков малого сечения (<10 мм). При этом достигается измельчение зеренной структуры до среднего размера зерна 10-40 мкм. Полученные прутковые полуфабрикаты обладают сочетанием низкого модуля Юнга (E = 30-50 ГПа), достаточно высокой прочности (σв = 600-800 МПа), высокой величины обратимой деформации (4,0-6,5 %) и сверхупругого поведения при комнатной температуре.

Нижеследующий пример иллюстрирует практические аспекты реализации заявленного способа.

Пример. Слиток сплава Ti-18Zr-15Nb (ат. %) был получен путем вакуумного дугового переплава (ВДП). ВДП проводили 4 раза для наиболее однородного распределения компонентов по всему объёму слитка.

Мультиосевую ковку проводили в три этапа со скоростью деформации 6 мм/с:

- на первом этапе слиток сначала нагревали в печи в течении 2 часов с температуры 700 °С до 1000 °С с последующей выдержкой 1 час при температуре 1000 °С. Далее была произведена осадка заготовки при 1000 °С в торец на 25-30%. После производилась ковка на квадрат □120 мм со сменой оси деформации;

- на втором этапе заготовку нагревали до 900 °С с последующей выдержкой 40 мин. Далее, аналогично первому этапу, была произведена осадка заготовки при 950 °С в торец на 25-30%. После производилась ковка на квадрат □105 мм;

- на третьем этапе заготовка загружалась в разогретую до 950 °С печь, затем печь с заготовкой была переведена на температуру 900 °С, время выдержки составило 40 минут. В момент выгрузки заготовки на деформацию температура печи опустилась до 920 °С. Осадка при температуре 920 °С в торец также составляла 25-30%; далее были проведены ковки на квадрат □92 мм и □87 мм, после чего осуществляли сбивание граней на круг, после чего диаметр заготовки составил ∅92 мм. Cуммарная относительная и истинная деформации, полный коэффициент вытяжки были рассчитаны исходя из начальных и конечных геометрических параметров для каждого этапа ковки. Полученную заготовку обточили до диаметра 85 мм для последующей поперечно-винтовой прокатки. Деформационные режимы процесса мультиосевой ковки представлены в таблице 1.

Таблица 1

Вид операции Слиток m = 13.8 кг Суммарная
относительная
деформация
ε, %
Полный к-нт вытяжки,
λполн
Истинная степень деформации, ε
hн, мм hк, мм Выдержка при температуре 1000 °С, 1 час Ковка (вытяжка) на □120 мм 149 105 179 120 132 120 124 120 17 1,21 0,19 Выдержка при температуре 950 °С, 40 минут Ковка (вытяжка) на □105 мм 216 152 148 98 164 98 145 98 128 105 115 105 23 1,3 0,26 Выдержка при температуре 950 °С, 40 минут Ковка на ∅92 мм 265 186 121 100 133 93 140 85 132 82 128 85 111 87 105 87 99 87 95 87 117 92 123 92 96 92 102 92 103 92 98 92 98 92 40 1,65 0,5 Суммарные значения за всю операцию 150 92 65 2,65 0,97

Поперечно-винтовая прокатка (ПВП) проходила поочерёдно на нескольких станах по достижению заготовкой определённых геометрических параметров. ПВП на трёхвалковом стане винтовой прокатки МИСИС-130Т проводили на заготовке с диаметром 85 мм, полученной по результатам мультиосевой ковки и обточки (см. выше). Заготовку нагревали до температуры 950 °С и выдерживали в течение 40 минут. Прокатку производили до диаметра 54 мм, после чего заготовку прокатывали на трёхвалковом стане винтовой прокатки МИСИС-100Т до диаметра 40,7 мм с предварительным подогревом в печи на температуре 950 °С в течение 15 минут. Заготовку разделили на 4 равные части и дальнейшую обработку производили по одинаковым геометрическим и деформационным параметрам. Далее прутки прокатывались на трёхвалковом министане винтовой прокатки 14-40 до диаметра 35,7 мм. В ходе операций образовался оксидный слой и для его удаления прутки были подвергнуты обточке до диаметра 30 мм. Дальнейшая обработка производилась на стане 10-30. Диаметр полученных заготовок 19,9 мм до чистовой обточки. Деформационные режимы ПВП представлены в таблице 2.

Таблица 2

Стан Диаметр Относительная
деформация, %
К-нт вытяжки,
λ
Полный к-нт вытяжки,
λполн
Истинная степень деформации, ε
D0 D1 Мисис-130T Выдержка при температуре 950 °С, 40 минут 85,0 78,0 15,8 1,19 1,19 0,17 78,0 74,0 10,0 1,11 1,32 0,11 74,0 67,0 18,0 1,22 1,61 0,20 67,0 61,0 17,1 1,21 1,94 0,19 61,0 54,0 21,6 1,28 2,48 0,24 Мисис-100T Выдержка при температуре 950 °С, 15 минут 54,0 47,0 24,2 1,32 3,27 0,28 47,0 40,7 25,0 1,33 4,36 0,29 14-40 40,7 35,7 23,1 1,30 5,67 0,26 Обточка 35,7 30,0 - - - - 10-30 Выдержка при температуре 910 °С, 40 минут 30,0 27,3 17,2 1,21 6,85 0,19 27,3 24,0 22,7 1,29 8,86 0,26 24,0 19,9 31,2 1,45 12,88 0,37 Суммарные значения за всю операцию 85 19,9 82/56* 5,67/2,27* 12,88 2,56

*Суммарные параметры деформации до и после обточки, соответственно.

Горячая ротационная ковка прутков Ti-Zr-Nb. После ПВП прутки с диаметром 19,9 мм были обточены до диаметра 17,6 мм для удаления поверхностного дефектного слоя. Заготовку перед началом ковки нагревали в электрической печи с нагревателями сопротивления до температуры 700 °С. Для замены байков между проходами на меньший диаметр заготовку помещали в печь. Оптическим пирометром осуществляли контроль температур. С уменьшением диаметра заготовки увеличивали скорость продольной подачи, что имело большое значение для режима течения металла в зоне деформации и получения качественной поверхности. После последнего прохода пруток охлаждали в воде. После РК прутки правили на правильно-полировальной машине за несколько проходов. Конечный диаметр чистовых прутков после шлифовальной обработки составил 5,5 мм. В таблице 3 представлены деформационные режимы горячей ротационной ковки (РК), в таблице 4 - суммарные параметры деформационных режимов для всех этапов термомеханической обработки.

Таблица 3

Вид операции Диаметр Относительная
деформация, %
К-нт вытяжки,
λ
Полный к-нт вытяжки,
λполн
Истинная степень деформации, ε
D0 D1 Горячая ротационная ковка при 700 °С Выдержка при температуре 700 °С, 30 минут 17,6 17,0 6,7 1,07 1,07 0,07 17,0 16,0 11,4 1,13 1,21 0,12 16,0 15,4 7,4 1,08 1,31 0,08 15,4 14,0 17,4 1,21 1,58 0,19 14,0 13,0 13,8 1,16 1,83 0,15 13,0 12,0 14,8 1,17 2,15 0,16 12,0 11,0 16,0 1,19 2,56 0,17 11,0 10,3 12,3 1,14 2,92 0,13 10,3 9,8 9,5 1,10 3,23 0,10 9,8 8,9 17,5 1,21 3,91 0,19 8,9 8,0 19,2 1,24 4,84 0,21 8,0 7,2 19,0 1,23 5,98 0,21 7,2 6,5 18,5 1,23 7,33 0,20 Суммарные значения за всю операцию 17,6 6,5 86,3 7,33 7,33 1,99

Таблица 4

Вид операции Диаметр Относительная
деформация, %
Полный к-нт вытяжки, λполн Истинная степень деформации, ε
D0 D1 Мультиосевая ковка 150 92 65 2,65 0,97 ПВП 85 19,9 82/56* 12,88 2,56 РК 17,6 6,5 86,3 7,33 1,99

*Суммарные параметры деформации до и после обточки соответственно в ходе операции

В результате всех операций был получен длинномерный пруток с диаметром 5,5 мм. Для изучения структурных характеристик в продольном и поперечном сечении были вырезаны 6 образцов высотой 4 мм из разных частей прутка и залиты двухкомпонентной заливочной смолой с быстрым отверждением на основе метилметакрилата в виде порошка и жидкости. Гладкую поверхность образцов после заливки получали путем многоступенчатой шлфовально-полировальной подготовки на шлифовальной машине.

Средний размер зерна был определён методом случайных секущих для всех подготовленных образцов. При помощи светового микроскопа были получены 9 микрофотографии для каждого подготовленного образца. На каждом изображении проводили по 15 параллельных линий с одинаковым интервалом. Были измерены длины участков секущей, попадающей на одно зерно, переведены в микрометры, для дальнейшего определения среднего размера зерна. В результате исследования было выявлено, что средний размер зерна для поперечного сечения составляет 19,5 мкм, для продольного сечения 24,7 мкм. Полученный пруток обладает достаточно мелкозернистой структурой, которая положительно влияет на функциональные свойства материала.

С целью изучения механических свойств из полученных прутков были подготовлены образцы для механических испытаний с длиной рабочей части 20 мм, диаметром 3 мм. Статические механические испытания на растяжение были проведены на разрывной машине со скоростью деформации 1 мм/мин. Были построены диаграммы «напряжение - деформация», из которых выявляли следующие значения: фазовый предел текучести σф, пересечение касательных линий области упругости и области текучести; модуль Юнга E на стадии упругости, тангенс угла наклона к касательной к области упругости; предел прочности σв, максимальное напряжение на полученной диаграмме «напряжение - деформация»; деформация до разрушения ε, максимальное значение деформации образца во время испытания. Циклические испытания проводились по схеме: «деформация на 1% - разгрузка» в каждом цикле с накоплением деформации до разрушения образца. По полученным диаграммам «напряжение - деформация» был рассчитан следующий параметр: максимальная обратимая деформация εобр, разность между наведённой и остаточной деформациями. Значения, полученные в результате механических испытаний после обработки представлены в таблице 5. Полученные прутковые полуфабрикаты обладают сочетанием низкого модуля Юнга (E = 42,6 ГПа), достаточно высокой прочности (σв = 641 МПа), высокой величины обратимой деформации (6,2 %) и сверхупругого поведения при комнатной температуре.

Таблица 5

σф, МПа σв, МПа E, ГПа ε, % εобр, % 258 641 42,6 14,6 6,2

Похожие патенты RU2753210C1

название год авторы номер документа
Способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий 2018
  • Шереметьев Вадим Алексеевич
  • Кудряшова Анастасия Александровна
  • Галкин Сергей Павлович
  • Прокошкин Сергей Дмитриевич
  • Браиловский Владимир Иосифович
RU2692003C1
СПОСОБ ПОЛУЧЕНИЯ ПРУТКОВ И СПОСОБ ПОЛУЧЕНИЯ ТОНКОЙ ПРОВОЛОКИ ИЗ СПЛАВА СИСТЕМЫ НИКЕЛЬ-ТИТАН С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ 2013
  • Андреев Владимир Александрович
RU2536614C2
Способ винтовой прокатки сплавов системы титан-цирконий-ниобий 2019
  • Шереметьев Вадим Алексеевич
  • Кудряшова Анастасия Александровна
  • Галкин Сергей Павлович
  • Прокошкин Сергей Дмитриевич
  • Браиловский Владимир Иосифович
RU2717765C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГОРЯЧЕКАТАНЫХ ТРУБ ИЗ АЛЬФА- И ПСЕВДО-АЛЬФА- ТИТАНОВЫХ СПЛАВОВ 2007
  • Смирнов Владимир Григорьевич
  • Моршинина Евгения Анатольевна
  • Калинин Владимир Сергеевич
  • Крохин Борис Глебович
RU2355489C2
Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы 2021
  • Андреев Владимир Александрович
  • Карелин Роман Дмитриевич
  • Юсупов Владимир Сабитович
  • Лайшева Надежда Владимировна
  • Лазаренко Галина Юрьевна
  • Комаров Виктор Сергеевич
RU2771342C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО СПЛАВА TiNi С ВЫСОКИМ УРОВНЕМ МЕХАНИЧЕСКИХ СВОЙСТВ 2016
  • Касимцев Анатолий Владимирович
  • Шуйцев Александр Владимирович
  • Маркова Галина Викторовна
  • Юдин Сергей Николаевич
RU2632047C1
СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОКАТАНЫХ ТРУБ ИЗ АЛЬФА- И ПСЕВДО-АЛЬФА-СПЛАВОВ НА ОСНОВЕ ТИТАНА 2013
  • Полудин Александр Витальевич
  • Белобородова Евгения Анатольевна
  • Крохин Борис Глебович
  • Калинин Владимир Сергеевич
  • Шушаков Сергей Викторович
RU2544333C1
Способ изготовления прутков из бронзы БрХ08 2023
  • Шильников Евгений Владимирович
  • Кабанов Илья Викторович
  • Шильников Александр Евгеньевич
  • Троянов Борис Владимирович
  • Петухов Петр Валентинович
RU2807260C1
СПОСОБ ПРОИЗВОДСТВА ПЕРЕДЕЛЬНЫХ ТРУБ РАЗМЕРОМ 292×12 мм НА ТПУ 8-16" С ПИЛИГРИМОВЫМИ СТАНАМИ ИЗ СЛИТКОВ-ЗАГОТОВОК ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА НИЗКОПЛАСТИЧНЫХ СТАЛЕЙ МАРОК 04Х14ТЗР1Ф-Ш И 04Х14Т5Р2Ф-Ш С СОДЕРЖАНИЕМ БОРА ОТ 1,3 ДО 3,5 % ДЛЯ ИЗГОТОВЛЕНИЯ ШЕСТИГРАННЫХ ТРУБ-ЗАГОТОВОК РАЗМЕРОМ "ПОД КЛЮЧ" 257+2,0/-3,0×6+2,0/-1,0×4300+80/-30 мм ДЛЯ УПЛОТНЕННОГО ХРАНЕНИЯ В БАССЕЙНАХ ВЫДЕРЖКИ АЭС И ТРАНСПОРТИРОВКИ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА 2013
  • Дубровский Вадим Александрович
  • Ефанов Вадим Юрьевич
  • Руссков Эдуард Викторович
  • Русецкий Владимир Сергеевич
  • Сафьянов Анатолий Васильевич
  • Матюшин Александр Юрьевич
RU2550033C2
"СПОСОБ ПРОИЗВОДСТВА ПЕРЕДЕЛЬНЫХ ТРУБ РАЗМЕРОМ 290Х12 ММ НА ТПУ 8-16" ПИЛИГРИМОВЫМИ СТАНАМИ ИЗ СЛИТКОВ-ЗАГОТОВОК ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА НИЗКОПЛАСТИЧНЫХ СТАЛЕЙ МАРОК 04Х14Т3Р1Ф-Ш И 04Х14Т5Р2Ф-Ш С СОДЕРЖАНИЕМ БОРА ОТ 1, 3 ДО 3, 5% ДЛЯ ИЗГОТОВЛЕНИЯ ШЕСТИГРАННЫХ ТРУБ-ЗАГОТОВОК РАЗМЕРОМ "ПОД КЛЮЧ" 257+2, 0/-3, 0Х6+2, 0/-1, ОХ4300+80/-30 ММ ДЛЯ УПЛОТНЕННОГО ХРАНЕНИЯ В БАССЕЙНАХ ВЫДЕРЖКИ АЭС И ТРАНСПОРТИРОВКИ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА" 2012
  • Сафьянов Анатолий Васильевич
  • Федоров Александр Анатольевич
  • Тазетдинов Валентин Иреклеевич
  • Воронин Анатолий Андреевич
  • Осадчий Владимир Яковлевич
  • Головинов Валерий Александрович
  • Пашнин Владимир Петрович
  • Матюшин Александр Юрьевич
  • Баричко Владимир Сергеевич
  • Климов Николай Петрович
  • Бубнов Константин Эдуардович
  • Сафьянов Александр Анатольевич
  • Еремин Виктор Николаевич
RU2511199C1

Реферат патента 2021 года СПОСОБ ИЗГОТОВЛЕНИЯ ПРУТКОВ ИЗ СВЕРХУПРУГИХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ Ti-Zr-Nb

Изобретение относится к области металлургии и может быть использовано для получения прутков из сверхупругих сплавов для медицинского применения. Способ изготовления длинномерных прутков диаметром 3÷10 мм из сверхупругого сплава системы титан-цирконий-ниобий, включающий получение полуфабриката поперечно-винтовой прокаткой из слитка и ротационную ковку полуфабриката на пруток окончательного размера. Перед поперечно-винтовой прокаткой слиток подвергают мультиосевой ковке с истинной степенью деформации, составляющей 0,15÷0,25 от общей истинной степени деформации. Поперечно-винтовую прокатку выполняют с истинной степенью деформации, составляющей 0,45÷0,65 от общей истинной степени деформации. Мультиосевую ковку, поперечно-винтовую прокатку и ротационную ковку ведут с промежуточными выдержками при температурах 950÷1050°С, 900÷950°С и 600÷750°С соответственно. Способ позволяет получать прутки с высокой прочностью и сверхупругостью при комнатной температуре. 1 з.п. ф-лы, 5 табл., 1 пр.

Формула изобретения RU 2 753 210 C1

1. Способ изготовления длинномерных прутков диаметром 3÷10 мм из сверхупругого сплава системы титан-цирконий-ниобий, включающий получение полуфабриката поперечно-винтовой прокаткой из слитка и ротационную ковку полуфабриката на пруток окончательного размера,

отличающийся тем, что

перед поперечно-винтовой прокаткой слиток подвергают мультиосевой ковке с истинной степенью деформации, составляющей 0,15÷0,25 от общей истинной степени деформации, а поперечно-винтовую прокатку выполняют с истинной степенью деформации, составляющей 0,45÷0,65 от общей истинной степени деформации.

2. Способ по п.1, отличающийся тем, что мультиосевую ковку, поперечно-винтовую прокатку и ротационную ковку ведут с промежуточными выдержками при температурах 950÷1050°С, 900÷950°С и 600÷750°С соответственно.

Документы, цитированные в отчете о поиске Патент 2021 года RU2753210C1

СПОСОБ ПОЛУЧЕНИЯ ПРУТКОВ И СПОСОБ ПОЛУЧЕНИЯ ПРОВОЛОКИ ИЗ СПЛАВОВ СИСТЕМЫ НИКЕЛЬ-ТИТАН С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ И СПОСОБ ПОЛУЧЕНИЯ ЭТИХ СПЛАВОВ 2000
  • Андреев В.А.
  • Бондарев А.Б.
  • Писарева Е.А.
  • Шупик А.В.
RU2162900C1
Способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий 2018
  • Шереметьев Вадим Алексеевич
  • Кудряшова Анастасия Александровна
  • Галкин Сергей Павлович
  • Прокошкин Сергей Дмитриевич
  • Браиловский Владимир Иосифович
RU2692003C1
Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr 2018
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Колмаков Алексей Георгиевич
  • Конушкин Сергей Викторович
  • Морозов Михаил Михайлович
  • Каплан Михаил Александрович
RU2694099C1
CN 108677060 B, 11.12.2020
CN 101696480 A, 21.04.2010
CN 107739885 B, 10.12.2019
JP 2003003224 A, 08.01.2003.

RU 2 753 210 C1

Авторы

Шереметьев Вадим Алексеевич

Лукашевич Константин Евгеньевич

Кудряшова Анастасия Александровна

Галкин Сергей Павлович

Прокошкин Сергей Дмитриевич

Андреев Владимир Александрович

Браиловский Владимир Иосифович

Даты

2021-08-12Публикация

2021-02-17Подача